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ABSTRACT

Plant-based bioremediation technologies have received recent attention as strategies to
clean-up contaminated soils and water. These strategies have collectively been termed
phytoremediation and refer to the use of green plants and their associated microbiota for
the in situ treatment of soil, sediment, and ground water. Biologically based remediation
strategies, including phytoremediation, have been estimated to be four to 1000 times
cheaper, on a per volume basis, than current non-biological technologies. Compounds
targeted for phytoremediation strategies include heavy metals, chlorinated solvents,
polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides, munitions and
radionuclides. While some of these contaminants are more readily degraded or detoxified
than others, plants or their attendant rhizosphere microbes have been shown in several
instances to transform these compounds to some degree. The main types of
phytoremediation strategies used include the stimulation of non-specific and specific
authochthonous and zymogenous rhizosphere microorganisms (both bacteria and fungi) for
the accelerated biodegradation of herbicide and solvent contaminants, the use of
"hyperaccumulating" plants for remediation of soils contaminated with metals, and the use
of plants to transform soluble contaminants to less soluble or less toxic forms. The ultimate
goal of all phytoremediation technologies is to either remove the contaminant from the
affected area, a process termed phytodecontamination, or to stabilize the contaminant to
prevent movement or toxicological affects. Below ground phytodecontamination processes
are thought to chiefly rely on rhizosphere degradation activity (either plant enzyme-or
microbiologically-driven) to transform hazardous waste materials. Future biotechnological
strategies for enhancing phytoremediation include enlarging root mass to increase
adsorption area, using Agrobacterium rhizogenes, the direct genetic engineering of plants
for altered biodegradation potential, and the genetic engineering of rhizosphere
microorganisms. However, while phytoremediation processes hold great promise as means
to remediate contaminated soils and water, there are advantages and disadvantages
associated with these strategies that must be carefully considered. Whereas attractions of
phytoremediation processes include cost effectiveness and non-invasiveness, they require
relatively long periods of time, often require the disposal of toxic vegetation, are
ineffective at remediating sites containing pollutants located deep into the soil profile, do
not work on all contaminants, are sensitive to contaminant types and concentrations, may
end up producing secondary metabolites which are more toxic than parent compounds, and
in many instances don’t remove environmentally significant quantities of pollutants.

Remediation of soils, water, and sediments contaminated with organic and inorganic
pollutants is of major importance and concern.  It has been estimated that it will require
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over $20 billion annually to clean-up contaminated sites in the United States and Europe
[5]. However, estimates of the costs of remediating contaminated soil and water vary
widely, depending on: (1) the location of the contaminant; (2)the chemical, physical and
biological properties of the contaminant; (3) whether the contaminated soil contains more
than one type of pollutant; (4)  the degree of remediation desired; (5) subsequent disposal
requirements; and (6) the techniques used. For example in situ remediation techniques
have been estimated to cost $10-100/m3,  ex-situ processes $30-$300/m3, and in situ soil
vitrification processes over $1,000/m3 [15]. On the other hand, biologically based
remediation technologies, including phytoremediation, have been estimated to be 4 to1000
times cheaper, on a per volume basis, than current non-biological techniques [14].
Consequently, the lower cost of phytoremediation makes it an attractive alternative over
other existing technologies, and in many instances, cost will be the driving force behind
adoption of plant-based remediation on a large scale.

Biologically-based remediation strategies (bioremediation) have received much recent
attention as means to clean-up contaminated soils and water. Phytoremediation,
collectively referring to all plant-based remediation strategies, uses green plants to
remediate contaminated sites. Several features make phytoremediation an attractive
alternative to most currently practiced in situ and ex situ techniques. These include low
capital cost, relatively minor on-going maintenance costs, non-invasiveness, easy start-up,
high public acceptance, regulatory agency acceptance, and the techniques provide a
pleasant appearance to the landscape [5].

In the last several decades, phytoremediation strategies have been examined as a means
to clean-up a number of hazardous organic and inorganic pollutants, including:  heavy
metals [11,28,38], chlorinated solvents [22,43], agrochemicals [1,24,27]; polycyclic
aromatic hydrocarbons [2,33], polychlorinated biphenyls [7,18], munitions [39] and
radionuclides [20]. Those soluble organic and inorganic contaminants, whhich move into
plant roots or the rhizosphere by the processes of mass flow or diffusion, appear to be the
most amenable to phytoremediation technologies [14,15,39]. In several instances, plants
and/or their attendant rhizosphere microbes have been shown to transform these
compounds to some degree [13,41,43]. Diverse plant species show great promise as
phytoremediation agents. These plants include: grasses, legumes, trees and several other
monocots and dicots [9,11,14,19,38,39]. Several different species of aquatic plants also
appear to be useful for phytoremediating contaminated surface water [34].

Phytoremediation technologies can be directed to above or below ground contaminants
and either remove pollutants from the affected area (phytodecontamination) or stabilize
them to prevent off-site movement (phytosequestration or phytostabilization). These later
techniques are useful for contaminants having low biodegradation potential or those which
rapidly move into the soil profile. Below ground phytostabilization processes involve the
sequestration of contaminants into soil particles, cell wall lignins, or into the soil humus
fraction [14] and reduce the bioavailability of contaminants [38]. Below ground
phytodecontamination processes, on the other hand, often rely on rhizosphere degradation
activity (either plant enzyme- or microbiologically-driven) to transform hazardous waste
materials (see below). In addition, several of these processes can occur ex planta or in
planta. Ex planta phytoremediation processes refer to those driven by the action of plant-
or microbially-derived soil enzymes [39] or by plant-associated microorganisms
[1,4,12,22,26,35,37]. While not yet used on field scale levels, enzymes responsible for ex
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planta soil enzyme biodegradation (dehalogenases, nitroreductases, nitrilases, peroxidases,
and laccases) have been investigated in some detail [5,39]. Cell free enzyme systems,
whether added to the soil or excreted from plant roots, may hold particular promise in
environments that are adverse for the growth and persistence of microorganisms [4]. The in
planta phytoremediation processes require that the pollutant is taken up into the plant.
Pollutants are taken up by roots, and either sequestered or translocated to shoots and leaves
[17]. Plants usually uptake organic compounds in the aqueous phase, by diffusion or mass
flow processes, although in some instances vapor phase transport can occur [14]. For many
organic compounds, root uptake has been shown to be proportional to Kow, the n-
octanol/water partition coefficient [8,15]. Organic and inorganic compounds can be
transported to other portions of the plant apoplastically or symplastically [38]. Ultimately,
the compound is either metabolized within the plant by conjugation to glutathione [21],
sequestered, or transpired from the plant.

Sequestration of pollutants within plants is the basis for phytoextraction of soils and
water contaminated with heavy metals [28,32].  Metals targeted for this type of
phytoremediation process include Cd, Pb, Zn, Cu, Cr, Ni, Se, and Hg [see 11,14].
Phytoextraction, using "hyperaccumulating" plants is proving to be one of the most
effective phytoremediation methods to clean-up metal contaminated soils and water [3].
Several plant species, including Thlaspi caerulescens have been shown to accumulate very
high levels of Zn and Cd from soils [3]. Brassica juncea has also been found to be an
excellent accumulator plant for metals in soils, such as Cd, Cr, Ni, Zn, and Cu [28,38] and
several plant species have been shown to accumulate Pb [15,19,25]. Plants, such as
Eichhornia crassipes,  Hydrocotyle umbellata, Lemna minor, Scirpus lacustris, Phragmites
karka, Bacopa monnieri,  and Azolla pinnata and are also effective at removing metals
from aquatic systems [see 10,38]. Plant shoots and roots containing metals are
subsequently harvested and treated as hazardous waste or the metals are recovered as ore.

Ex planta phytoremediation can also occur via the degradative activity of rhizosphere
microorganisms. The rhizosphere is operationally defined as the "soil-root interfacial area"
and relatively large numbers of diverse species of microorganisms live in association with
plant roots [16]. The word "rhizosphere", first introduced by Hiltner in 1904 [23] to
describe the interaction between bacteria and the roots of legumes, has been operationally
defined to mean many things to many researchers [29]. The rhizosphere consists of the
endorhizosphere (various cell layers of the root), ectorhizosphere (the immediate soil area
surrounding the root) and the rhizoplane (the root surface) [29]. Microorganisms colonize
and live within  these areas and the degree of intimacy at which a microorganism interacts
with a root varies in proportion to the distance from the root surface. The closer a microbe
is to the root surface, the more its growth and behavior is influenced by plant-released
materials [36]. The intimacy of the association between soil microorganisms and plant
roots is determined, in part, by the types and concentrations of compounds exuded by roots
[35]. Root exudations are thought to have a stimulatory affect on rhizosphere microbes,
which in turn, are purported to accelerate biodegradation in the rhizosphere
[1,2,13,22,30,33,41]. While there has been much discussion on the usefulness of this
technology, the reader is cautioned to examine published studies carefully, since in many
instances reported enhanced biodegradation is relatively small, environmentally
insignificant, or occurs at rates not suitable for field use. Moreover, inconsistent results
have been reported from several studies, using various plants and microorganisms and
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different substrates. It has been hypothesized that this may be due to specific soil-
chemical-plant interactions [26,37,42] or other abiotic factors. A variety of compounds
have now been evaluated for their ability to be degraded in planted soils, including:
hydrocarbons, halogenated aromatic, aromatic hydrocarbons, halogenated aliphatics,
polycyclic aromatic hydrocarbons, pesticides, and nonvolatile hydrocarbons [6,12,43].
While there is some information available concerning the ecology of rhizosphere
populations in planted, contaminated soils [30], there is little information about how
polluted soils change microbial community structure in the rhizosphere.

Rhizosphere-enhanced degradation has also been reported to occur with genetically
engineered microorganisms.  In 1995, Brazil and coworkers [7] described the genetic
construction of rhizosphere-competent pseudomonads which were engineered to contain
the bacterial bph genes for biodegradation of PCBs. These strains have the potential to
degrade PCBs in the rhizosphere and could be useful for bioremediation purposes. In
addition,  Crowley and coworkers [13] reported that a rhizosphere competent
Pseudomonas fluorescens strain containing genes for 2,5-dichlorobenzoate degradation
(2,5-DCB) had higher degradation rates in planted soil than non-planted ones. The degree
of bioremediation appears to be related to the plant species present [40] and most likely
reflects differences in: (1) root architecture; (2) plant metabolism; (3) quantity and quality
of root exudates; (4) root radius [12]; and (5) soil type [6].

Summary

In summary, phytoremediation processes hold great promise as means to clean-up polluted
soils and water. Currently, the most advanced and effective phytoremediation technology
is phytoextraction of heavy metals from soils using hyperaccumulating plants. In addition,
aquatic plants also hold great promise to rid contaminated water of heavy metal
contaminants. It is hoped that in the future, phytoremediation technologies using
rhizosphere microorganisms will become more efficacious.  This will most likely occur by
using genetic engineering and plant breeding techniques and having a much better
understanding of the ecology of  rhizosphere  microorganisms growing in polluted soils
and water.
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