
Plant-Microbe Interactions

1

PHYTOREMEDIATION: PAST PROMISES AND FUTURE
PRACTICES

Sadowsky, M. J.
Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, 55108, USA

ABSTRACT
Plant-based bioremediation technologies have received recent attention as strategies to clean-up
contaminated soils and water. These strategies have collectively been termed phytoremediation and refer
to the use of green plants and their associated microbiota for the in situ treatment of soil, sediment, and
ground water. Biologically based remediation strategies, including phytoremediation, have been
estimated to be four to 1000 times cheaper, on a per volume basis, than current non-biological
technologies. Compounds targeted for phytoremediation strategies include heavy metals, chlorinated
solvents, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides, munitions and
radionuclides. While some of these contaminants are more readily degraded or detoxified than others,
plants or their attendant rhizosphere microbes have been shown in several instances to transform these
compounds to some degree. The main types of phytoremediation strategies used include the stimulation
of non-specific and specific authochthonous and zymogenous rhizosphere microorganisms (both
bacteria and fungi) for the accelerated biodegradation of herbicide and solvent contaminants, the use of
"hyperaccumulating" plants for remediation of soils contaminated with metals, and the use of plants to
transform soluble contaminants to less soluble or less toxic forms. The ultimate goal of all
phytoremediation technologies is to either remove the contaminant from the affected area, a process
termed phytodecontamination, or to stabilize the contaminant to prevent movement or toxicological
affects. Below ground phytodecontamination processes are thought to chiefly rely on rhizosphere
degradation activity (either plant enzyme-or microbiologically-driven) to transform hazardous waste
materials. Future biotechnological strategies for enhancing phytoremediation include enlarging root
mass to increase adsorption area, using Agrobacterium rhizogenes, the direct genetic engineering of
plants for altered biodegradation potential, and the genetic engineering of rhizosphere microorganisms.
However, while phytoremediation processes hold great promise as means to remediate contaminated
soils and water, there are advantages and disadvantages associated with these strategies that must be
carefully considered. Whereas attractions of phytoremediation processes include cost effectiveness and
non-invasiveness, they require relatively long periods of time, often require the disposal of toxic
vegetation, are ineffective at remediating sites containing pollutants located deep into the soil profile, do
not work on all contaminants, are sensitive to contaminant types and concentrations, may end up
producing secondary metabolites which are more toxic than parent compounds, and in many instances
don’t remove environmentally significant quantities of pollutants.

Remediation of soils, water, and sediments contaminated with organic and inorganic pollutants is of
major importance and concern.  It has been estimated that it will require over $20 billion annually to
clean-up contaminated sites in the United States and Europe [5]. However, estimates of the costs of
remediating contaminated soil and water vary widely, depending on: (1) the location of the contaminant;
(2)the chemical, physical and biological properties of the contaminant; (3) whether the contaminated soil
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contains more than one type of pollutant; (4)  the degree of remediation desired; (5) subsequent disposal
requirements; and (6) the techniques used. For example in situ remediation techniques have been
estimated to cost $10-100/m3,  ex-situ processes $30-$300/m3, and in situ soil vitrification processes
over $1,000/m3 [15]. On the other hand, biologically based remediation technologies, including
phytoremediation, have been estimated to be 4 to1000 times cheaper, on a per volume basis, than current
non-biological techniques [14]. Consequently, the lower cost of phytoremediation makes it an attractive
alternative over other existing technologies, and in many instances, cost will be the driving force behind
adoption of plant-based remediation on a large scale.

Biologically-based remediation strategies (bioremediation) have received much recent attention
as means to clean-up contaminated soils and water. Phytoremediation, collectively referring to all plant-
based remediation strategies, uses green plants to remediate contaminated sites. Several features make
phytoremediation an attractive alternative to most currently practiced in situ and ex situ techniques.
These include low capital cost, relatively minor on-going maintenance costs, non-invasiveness, easy
start-up, high public acceptance, regulatory agency acceptance, and the techniques provide a pleasant
appearance to the landscape [5].

In the last several decades,  phytoremediation strategies have been examined as a means to clean-
up a number of hazardous organic and inorganic pollutants, including:  heavy metals [11,28,38],
chlorinated solvents [22,43], agrochemicals [1,24,27]; polycyclic aromatic hydrocarbons [2,33],
polychlorinated biphenyls [7,18], munitions [39] and radionuclides [20]. Those soluble organic and
inorganic contaminants, whhich move into plant roots or the rhizosphere by the processes of mass flow
or diffusion, appear to be the most amenable to phytoremediation technologies [14,15,39]. In several
instances, plants and/or their attendant rhizosphere microbes have been shown to transform these
compounds to some degree [13,41,43]. Diverse plant species show great promise as phytoremediation
agents. These plants include: grasses, legumes, trees and several other monocots and dicots
[9,11,14,19,38,39]. Several different species of aquatic plants also appear to be useful for
phytoremediating contaminated surface water [34].

Phytoremediation technologies can be directed to above or below ground contaminants and
either remove pollutants from the affected area (phytodecontamination) or stabilize them to prevent off-
site movement (phytosequestration or phytostabilization). These later techniques are useful for
contaminants having low biodegradation potential or those which rapidly move into the soil profile.
Below ground phytostabilization processes involve the sequestration of contaminants into soil particles,
cell wall lignins, or into the soil humus fraction [14] and reduce the bioavailability of contaminants [38].
Below ground phytodecontamination processes, on the other hand, often rely on rhizosphere degradation
activity (either plant enzyme- or microbiologically-driven) to transform hazardous waste materials (see
below). In addition, several of these processes can occur ex planta or in planta. Ex planta
phytoremediation processes refer to those driven by the action of plant- or microbially-derived soil
enzymes [39] or by plant-associated microorganisms [1,4,12,22,26,35,37]. While not yet used on field
scale levels, enzymes responsible for ex planta soil enzyme biodegradation (dehalogenases,
nitroreductases, nitrilases, peroxidases, and laccases) have been investigated in some detail [5,39]. Cell
free enzyme systems, whether added to the soil or excreted from plant roots, may hold particular
promise in environments that are adverse for the growth and persistence of microorganisms [4]. The in
planta phytoremediation processes require that the pollutant is taken up into the plant.  Pollutants are
taken up by roots, and either sequestered or translocated to shoots and leaves [17]. Plants usually uptake
organic compounds in the aqueous phase, by diffusion or mass flow processes, although in some
instances vapor phase transport can occur [14]. For many organic compounds, root uptake has been
shown to be proportional to Kow, the n-octanol/water partition coefficient [8,15]. Organic and inorganic
compounds can be transported to other portions of the plant apoplastically or symplastically [38].
Ultimately, the compound is either metabolized within the plant by conjugation to glutathione [21],
sequestered, or transpired from the plant.
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Sequestration of pollutants within plants is the basis for phytoextraction of soils and water
contaminated with heavy metals [28,32].  Metals targeted for this type of phytoremediation process
include Cd, Pb, Zn, Cu, Cr, Ni, Se, and Hg [see 11,14]. Phytoextraction, using "hyperaccumulating"
plants is proving to be one of the most effective phytoremediation methods to clean-up metal
contaminated soils and water [3].  Several plant species, including Thlaspi caerulescens have been
shown to accumulate very high levels of Zn and Cd from soils [3]. Brassica juncea has also been found
to be an excellent accumulator plant for metals in soils, such as Cd, Cr, Ni, Zn, and Cu [28,38] and
several plant species have been shown to accumulate Pb [15,19,25]. Plants, such as Eichhornia
crassipes,  Hydrocotyle umbellata, Lemna minor, Scirpus lacustris, Phragmites karka, Bacopa
monnieri,  and Azolla pinnata and are also effective at removing metals from aquatic systems [see
10,38]. Plant shoots and roots containing metals are subsequently harvested and treated as hazardous
waste or the metals are recovered as ore.

Ex planta phytoremediation can also occur via the degradative activity of rhizosphere
microorganisms. The rhizosphere is operationally defined as the "soil-root interfacial area" and
relatively large numbers of diverse species of microorganisms live in association with plant roots [16].
The word "rhizosphere", first introduced by Hiltner in 1904 [23] to describe the interaction between
bacteria and the roots of legumes, has been operationally defined to mean many things to many
researchers [29]. The rhizosphere consists of the endorhizosphere (various cell layers of the root),
ectorhizosphere (the immediate soil area surrounding the root) and the rhizoplane (the root surface) [29].
Microorganisms colonize and live within  these areas and the degree of intimacy at which a
microorganism interacts with a root varies in proportion to the distance from the root surface. The closer
a microbe is to the root surface, the more its growth and behavior is influenced by plant-released
materials [36]. The intimacy of the association between soil microorganisms and plant roots is
determined, in part, by the types and concentrations of compounds exuded by roots [35]. Root
exudations are thought to have a stimulatory affect on rhizosphere microbes, which in turn, are
purported to accelerate biodegradation in the rhizosphere [1,2,13,22,30,33,41]. While there has been
much discussion on the usefulness of this technology, the reader is cautioned to examine published
studies carefully, since in many instances reported enhanced biodegradation is relatively small,
environmentally insignificant, or occurs at rates not suitable for field use. Moreover, inconsistent results
have been reported from several studies, using various plants and microorganisms and different
substrates. It has been hypothesized that this may be due to specific soil-chemical-plant interactions
[26,37,42] or other abiotic factors. A variety of compounds have now been evaluated for their ability to
be degraded in planted soils, including: hydrocarbons, halogenated aromatic, aromatic hydrocarbons,
halogenated aliphatics, polycyclic aromatic hydrocarbons, pesticides, and nonvolatile hydrocarbons
[6,12,43]. While there is some information available concerning the ecology of rhizosphere populations
in planted, contaminated soils [30], there is little information about how polluted soils change microbial
community structure in the rhizosphere.

Rhizosphere-enhanced degradation has also been reported to occur with genetically engineered
microorganisms.  In 1995, Brazil and coworkers [7] described the genetic construction of rhizosphere-
competent pseudomonads which were engineered to contain the bacterial bph genes for biodegradation
of PCBs. These strains have the potential to degrade PCBs in the rhizosphere and could be useful for
bioremediation purposes. In addition,  Crowley and coworkers [13] reported that a rhizosphere
competent Pseudomonas fluorescens strain containing genes for 2,5-dichlorobenzoate degradation (2,5-
DCB) had higher degradation rates in planted soil than non-planted ones. The degree of bioremediation
appears to be related to the plant species present [40] and most likely reflects differences in: (1) root
architecture; (2) plant metabolism; (3) quantity and quality of root exudates; (4) root radius [12]; and (5)
soil type [6].

In summary,  phytoremediation processes hold great promise as means to clean-up polluted soils
and water. Currently, the most advanced and effective phytoremediation technology is phytoextraction
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of heavy metals from soils using hyperaccumulating plants. In addition, aquatic plants also hold great
promise to rid contaminated water of heavy metal contaminants. It is hoped that in the future,
phytoremediation technologies using rhizosphere microorganisms will become more efficacious.  This
will most likely occur by using genetic engineering and plant breeding techniques and having a much
better understanding of the ecology of  rhizosphere  microorganisms growing in polluted soils and water.
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