

On-Line System Identification Using Context Discernment
Lars Holmstrom1, Roberto Santiago2, George G. Lendaris3

NW Computational Intelligence Laboratory, Portland State University
Portland, OR 97201

1,2: Graduate Students, Systems Science Ph.D. Program 1larsh@pdx.edu, 2robes@pdx.edu
3. Professor of Systems Science and Electrical & Computer Engineering, lendaris@sysc.pdx.edu

Abstract: Mathematical models are often used in system
identification applications. The dynamics of most sys-
tems, however, change over time and the sources of these
changes cannot always be directly determined or meas-
ured. To maintain model accuracy, it is desirable to de-
sign system identifiers that can adapt to these dynamical
shifts. We use reinforcement learning to train an agent to
recognize dynamical changes in a modeled system and to
estimate new parameter values for the model. The subse-
quent actions of this agent are characterized as “moving”
the parameterized model on an optimal trajectory in
model parameter space. It is found that this method is
capable of quickly and accurately discerning the correct
parameter values.

I. Introduction

System identification is central to many applications
(e.g., controls, system analysis, predictive modeling), and
central to system identification is the development of mod-
els. Parametric models are typically used, wherein the
model’s structure is crafted to blend requirements associated
with aspects of the system that are of interest to the user of
the model, and those associated with a priori knowledge of
the system’s underlying “structure”. Coefficients associated
with the various model components are called parameters;
distinct combinations of parameter values typically corre-
spond to a different system. To illustrate, consider a dynamic
system where the system’s behavior can be written as a se-
ries of differential equations (systems governed by physical
laws are ideal candidates for this type of modeling). For such
a system, the model structure is typically determined by the
physical relationships of the components of the system, and
the model parameters often correspond to physical attributes
of the system (e.g. moments of inertia, masses, friction, and
spring constants). Such models are not limited to physical
systems, however. This type of modeling is also common in
economics, psychology, the social sciences, and more.

After defining the structure of one’s model, values for
each of the parameters must be determined to yield model
behavior that closely matches that of the system being mod-
eled. Some parameters may be easy to directly measure, like
the length of a visible component of a mechanical system.

 This work was partially supported by NSF Grant ECS-0301022

Others may be more difficult to directly measure, such as the
average effect of disposable income on physical health in a
socio-economic model. Still others may not be directly
measurable at all, such as the friction from a specific bearing
in an assembled piece of machinery.

Gradient descent is a method commonly used to deter-
mine values for model parameters that are not directly acces-
sible in the system being modeled. This method defines a
space whose dimensions correspond to the various parame-
ters, plus an extra dimension to represent some criterion
function (CF), for example, the squared difference between
model output and corresponding system output. This space is
searched for the parameter values that minimize the CF,
where the search employs the local gradient to determine the
direction and size of the next “step” in the parameter space.
This process is iterated over a broad range of the system’s
possible behaviors, with the goal of converging on the pa-
rameter values that, on average, best fit the behavior of the
model to that of the system.

While effective, gradient descent methods are unfortu-
nately plagued with a number of problems, a well-known
one being the potentially long time it may take for the proc-
ess to converge. In addition, there is no guarantee in the gra-
dient descent method that the path taken through parameter
space during the search (estimation) process is a direct one,
nor that the path taken will avoid estimates that could be
problematic for application related calculations and/or deci-
sions that are based on these estimates.

One approach used to address both of these issues is to
perform the model parameter estimation process off-line, in
a non-critical setting, and subsequently employ the com-
pleted model in the application. Unfortunately, there is no
guarantee that this model will continue to be the best fit
model as time progresses, as properties of real world systems
typically change over time. In some cases, these changes are
the result of fundamental changes to the interactions present
among the components of the system, and to reflect such
changes, the underlying structure of the model must be
changed. A more common scenario, however, is that the
types of interactions remain intact but the magnitude of these
interactions change. For example, in a mechanical system
springs wear out and friction increases. In such cases, the
model can be adapted by re-estimating (finding new values
for) the model parameters that correspond to this type of
change in the system.

In an on-line application where accurate modeling is time
critical, however, gradient descent is typically not a viable
option for re-fitting the model; the process simply takes too
long. Further, there is no guarantee that the search for better
parameter values will not result in worse models along the
way. Finally, it may not be possible in an on-line setting to
iterate the gradient descent search over a wide enough range
of system behaviors, and the process may thus yield a sub-
optimal model.

Some researchers have addressed this issue by pursuing
the development of system identifiers that learn to adapt to
new dynamic behaviors of the system being modeled. This
has generated interest in recurrent neural networks which
can rapidly recall previously learned dynamic behaviors
without needing to be retrained in order to do so. These net-
works can then adapt to novel situations by generalizing
among these previously learned behaviors. It was recently
shown in [3] that a standard recurrent multilayer Perceptron
(RMLP) could be trained using back propagation through
time with extended Kalman filtering to create a network that
performs rapid system identification. The latter task is ac-
complished by the trained network without needing to mod-
ify any of its weights. These networks are known under the
rubric of Fixed Weight Neural Networks (FWNNs). More
recently, it was shown in [4] that the weight values devel-
oped in some FWNNs effectively define two distinct sub-
NNs: one serves as a parameterized model, referred to as a
multifunction network, and the other serves to set this
model’s parameters, referred to as a context discerner. That
result has since been extended to a more general method,
called context discerning multifunction networks (CDMN),
and has been generalized to a theory of Contextual Rein-
forcement Learning [5]. The research reported here is an
application of the CDMN method.

DEFINITION: For the present purposes, each different
instantiation of dynamics by the system is called a different
context. The agent’s ability to detect shifts in the system’s
dynamics is called contextual awareness. Once the context
shift has been detected, the agent’s ability to recognize the
new context (e.g., by determining a new model whose be-
haviors match those of the system – by re-estimating model
parameters in our current scenario) is called context dis-
cernment. Once the discernment is accomplished, the agent
may use this information as needed, e.g., to directly select an
optimal controller that corresponds to the newly discerned
system dynamics. We propose calling a controller with such
discernment capability embedded into it a contextually
aware controller.

II. The Experiment

For a demonstration of this context discernment method-
ology, we use a version of the benchmark pole-cart system.
We assume that the length and mass attributes of the pole
may change (perhaps drastically) at various points in time,

but cannot be directly measured for the purpose of fitting a
model of the system. Through application of reinforcement
learning, we train an agent to detect the effects of changes to
the length and mass of the pole by comparing deviations in
the state trajectories between the available pole-cart model
and the actual pole-cart system. Using only these observa-
tions, this agent is then able to output an adjustment to our
current values of these parameters in an iterative process that
ultimately converges upon the actual values of the pole
length and mass. In the present paper, we discuss only the
parameter discernment process, not the process of designing
a contextually aware controller, for the pole-cart system. The
latter process will be the subject of a forthcoming paper.

III. Methods

Fig. 1 indicates the basic architecture of the context dis-
cerner used in the experiments for the present work. The
variables subscripted with an ‘A’ represent the Actual pole-
cart system being controlled; those subscripted with a ‘D’
represent Discerned values resulting from the context dis-
cernment process. At time t, the pole-cart system is in state
RA(t). The current estimated values of the mass and length of
the pole in the pole-cart system (the discerned context) con-
stitute the vector CD(t), and the actual values constitute the
vector CA(t). [Note: the training process never requires ex-
plicit knowledge of CA(t).] The current state information
RA(t) and a control u(t) are applied to the model (resulting in
a transition to state RD(t+1)) and to the pole-cart system (re-
sulting in a transition to state RA(t+1)). D(t) corresponds to
the difference between RD(t+1) and RA(t+1). If D(t) is non-
zero, this indicates that our current model is incorrect and
needs to be adjusted. The ensemble of data comprising RA(t),
u(t), D(t), and CD(t) are presented to a Context Discerning
Network (CDN). The CDN then provides an adjustment,
∆CD (t), to CD(t) such that CD(t+1) = CD(t) + ∆CD(t). The
goal of the CDN is to iterate the above process and to pro-
vide a sequence of ∆CD(t)s such that CD(t) ultimately con-

Figure 1: Basic Architecture for Contextual Discernment

verges to CA(t). If the structure of our model is chosen cor-
rectly, the behavior of our model will accurately match the
behavior of the pole-cart system when CD(t) = CA(t). When
this occurs, we say we have discerned the values of CA(t).

The state vector RA(t) of the pole-cart system comprises
the horizontal displacement of the cart from a specified ref-
erence point (x(t)), the horizontal velocity of the cart
(dx(t)/dt), the angular displacement of the pole from the up-
right position (θ(t)), and the angular velocity of the pole
(dθ(t)/dt). The control signal, u(t), is the magnitude of the
force applied to the cart parallel to the track. Positive control
signals indicate a force to the right and negative control sig-
nals indicate a force to the left. The context vector contains
parameters corresponding to the mass and length of the pole
(cf. Section IX).

This architecture provides a framework in which the key
components of context discernment as defined above are
present. It handles contextual awareness by comparing
RD(t+1) and RA(t+1) at each step of the process. This, in
effect, is a measure of how our model’s state trajectory devi-
ates from that of the actual pole-cart system. It handles con-
text discernment by the iterative corrections to CD by the
CDN. What remains, however, is a description of how to
train the CDN to perform this task.

IV. Reinforcement Learning

The method we use for training the CDN is based on
Dual Heuristic Programming (DHP) [2], one of the adaptive
critic versions of reinforcement learning. Reinforcement
learning [6] is a paradigm in which an agent learns a policy –
a mapping of state information to actions – that maximizes a
reward or minimizes a punishment over time. One family of
algorithms that belong to this paradigm learns approximately
optimal policies through application of the underlying defi-
nitions and recursion equation of Dynamic Programming [1].
When the agent applies an action u(t) (this may be a control
signal or a decision) and transitions a plant from state R(t-1)
to state R(t), a reward (or punishment) U(t) occurs. In Dy-
namic Programming, the latter is called the primary utility,
and a secondary utility function, J(R(t)), or more simply J(t),
is defined as:

)()(
0

ktUtJ
k

k +=∑
∞

=

γ (1)

The value J(t) is often called the “cost to go”, and refers
to the cost that will be accumulated in going from the state at
current time t to the end point of the plant’s trajectory in
state space, under influence of the current control policy.
The γ term in the above equation (0<γ≤1) allows discounting
of future costs.

A. Adaptive Critic Methods
The methods known as Adaptive Critics belong to the

Reinforcement Learning class. In Adaptive Critics, there is a
critic agent whose purpose is to output an estimate of J(t),
given current state and/or action information. The critic is

adaptive in the sense that it learns to better approximate the J
surface (“plotted” via an extra dimension for J in state space)
as the iterative, two-loop, learning process proceeds. This J
surface information is used to aid the process of developing
an optimal policy within the action agent (controller).

B. Dual Heuristic Programming
Dual Heuristic Programming (DHP) is an Adaptive

Critic method. A key distinction of DHP from other Adap-
tive Critic methods is that the critic approximates the gradi-
ent of the J surface rather than the J surface itself. This gra-
dient is referred to as λ(t). The basic architecture of the DHP
design consists of five components: an actor (action agent), a
critic, a plant, a plant model, and a utility function.

The actor component provides a mapping of the state
R(t) to the action u(t). The plant and plant model provide a
mapping of the state R(t) and action u(t) to the state R(t+1).
The critic component provides a mapping of the state R(t)
(and sometimes u(t)) to the value λ(t). The utility component
provides a mapping of R(t) (and sometimes u(t)) to U(t).

During training, these components work in conjunction
to update the actor and critic components. The actor compo-
nent is updated with the objective of maximizing (or mini-
mizing) J(t). The critic is updated with the objective of ap-
proximating λ*(t), corresponding to the gradient of J*(t),
which in turn corresponds to the optimal actor design.

V. Training the CDN

 The method we use to train the CDN borrows heavily
from applications of Reinforcement Learning in the domain
of controller design. As mentioned above, the goal of Rein-
forcement Learning in controller design is to learn a control
policy (a mapping of plant state R(t) to control u(t)) that
minimizes the utility function, J(t) – cf. Eqn. (1). By redefin-
ing a few variables, we can re-purpose this framework and
apply this same methodology for the task of context dis-
cernment. Let CD(t) be the state of the plant that is to be
“controlled” at time t, and the corresponding control at time
t to be ∆CD(t). With these definitions, Rplant(t) = CD(t) and
Rplant(t+1) = CD(t) + ∆CD(t). Next, define the primary utility
U(t) to be D(t)2; the squared error between RA(t+1) and
RD(t+1). Looking back at Figure 1 and considering this new
framework, the CDN plays the role of controller, and the
summing node that follows it plays the role of plant (a dy-
namics-free plant).

VI. Discernment

The goal of Reinforcement Learning in this application is
then to design an agent (the CDN) that implements a policy
(mapping of CD(t) to ∆CD(t)) that minimizes the summed
values of D(t)2 over time (cf. Eqn (1)) as the model parame-
ters are adjusted. Not only does the CDN learn a policy that
enables it to discern the current system context (that is, de-
termining a new model whose behaviors match those of the

system), but it does so in a way that meets our defined opti-
mality criteria.

Fig. 2 shows the architecture used for training the CDN.
In a typical application of DHP, the following error signals
are used for training the controller and critic components
during each iteration of the training process:

()
() () ()

()
()

()
()
()

2

)(111

−

∂
∂

∂
+∂+

∂
+∂++

∂
∂=

∧∧
t

tR
tu

tu
tR

tR
tRt

tR
tUErrorCritic λλγ (2)

()

() ()11 +
∂

+∂=
∧

t
tu

tRErrorController λ (3)

With the substitutions R(t)→CD(t), u(t)→∆CD(t), and

CD(t+1) = CD(t) + ∆CD(t), these training signals simplify to:

()
() () ()

()

2

)(1

−

∂
∆∂

+++
∂
∂=

∧∧
t

tC
tCIt

tC
tUError

D

D

D
Critic λλγ (4)

 ()1+=
∧

tErrorController λ (5)

()
()tC

tC

D

D

∂
∆∂ is obtained by back propagating ∆CD(t)) through

the CDN. ()t
∧
λ and ()1+

∧
tλ are estimated values for the

present and future gradients of the secondary utility function
J(t) and are output by the critic. ()

()tC
tU

D∂
∂ is calculated using

the model Jacobian with respect to the current discerned
context variables.

VII. Training Parameters

For the training process, both the controller and critic
networks have feed forward neural network architectures
with 7 inputs, 1 hidden layer with 12 nodes, and 2 outputs.
Hyperbolic tangent activation functions are used in all cases.

For each training epoch, the mass and length of the pole
(the components of CA(t)) were randomly set in the pole-cart
system. The range for the mass was [0.02, 1.5] kg and the
range for the length was [0.02, 1.5] m. This range was ample
to provide a wide range of dynamic behavior from the sys-
tem.

For each training step of each epoch, the pole-cart system
and the model were placed in a randomly selected point in
state space (RA(t)) and a random control (u(t)) applied. The
ranges for the random selection were: x(t)=[-1,1] m,
dx(t)/dt=[-1,1] m/s, θ(t)=[-π/4, π/4] rads, dθ(t)/dt=[-1,1]
rads/s, and u(t)=[-5,5] N. The pole-cart system then transi-
tions to RA(t+1) and the model to RD(t+1). The difference
between these resulting states is then used by the CDN for
the calculation of ∆CD(t). The error signals for the critic
network (Eqn. 4) and the CDN (Eqn. 5) are then calculated
and both networks’ weights are adjusted. For the training of
the CDN discussed below, 10,000 epochs of 25 training
steps each were performed.

VIII. Results Using the Trained CDN

Figs. 3 and 4 show the test results of the trained CDN af-
ter the learning process has been completed. The mass
and/or length of the pole in the pole-cart system (CA(t)) were

Figure 2: Architecture For Training CDN

randomly reset after every 50 iterations. The flat lines in Fig.
3 correspond to these “actual” parameters. Based on devia-
tions between RA(t+1) and RD(t+1) at each step of the testing
process, the CDN produces a correction to CD(t). The non-
flat lines in Fig. 3 correspond to these discerned parameters.
As can be seen, the values of CD(t) converge, to a high de-
gree, on the values of CA(t). In some cases, this convergence
happens in as few as 5 iterations. Considering the 0.02s
sampling time for our process, the CDN is able to discern the
mass and length of the pole in the pole-cart system in as little
as 0.1s.

Fig. 4 shows the squared error between RA(t+1) and
RD(t+1) at each step of this test. As can be seen, there is a
jump in the error between the actual and expected state tra-
jectories every 50 steps when new values for the mass and
length of the pole are instantiated. This error quickly drops
to near zero as the context discernment process refits the
model to the pole-cart system.

IX. Simplifications and Assumptions

A number of simplifications and assumptions were made
for the above experiments. Primarily, the “actual” pole-cart
system and the model of this system use the same set of de-
terministic, noise-free differential equations to describe their
state transitions. The behavior of each instantiation of this

mathematical model may still be made distinct, however, by
setting the parameters differently (including the mass and the
length of the pole). There are some profound aspects in
which the above simplification affects this experiment.

First, it lets us completely ignore the effects of noise and
stochasticity in the context discernment process. If noise
were present in our measurements or if the state transitions
of our system or model were not deterministic, it would be
more difficult to identify the source of deviations between
the system’s state trajectory and that of the system’s model,
particularly since we compute these deviations at each step
in the present configuration. One alternative to address this
issue will be to make the estimates/discernment based on
longer segments of the trajectory.

Second, using the same set of equations for both the sys-
tem and the model in our framework is equivalent to choos-
ing the perfect model structure for modeling the system. This
in turn allows the context discernment process to find a set
of model parameters such that the model’s behavior will
exactly match that of the system. Furthermore, if there is a
unique set of parameter values that produces these behav-
iors, we can exactly discern the values of these parameters
by the above methodology. This will not, in general, be the
case. If the structure of our model is not “perfect,” then we
could expect some differences between the behavior of the

Figure 3: Demonstration of Context Discernment

Figure 4: Error between Outputs of System and Model

model and the behavior of the system being modeled. In
such scenarios, we can only hope to discern the model pa-
rameters that are “best” based on some defined criteria. Ex-
periments along this line are planned for future work.

Finally, the use of mathematical models wherein the pa-
rameters correspond to physical attributes of the system be-
ing modeled is a special case. This allows us to give names
and meaning to the discerned parameters, such as “mass of
pole”, “length of pole”, or “wheel friction”. If our model
were instead, for example, a neural network, we could not
typically label a discerned connection weight in the same
way. We only mention this for completeness, as in our view,
this does not in any way make the process of context dis-
cernment less meaningful when using connectionist models.
Further discussion of this, however, is left for another paper.

X. Context Discernment as a Trajectory in Model Pa-

rameter Space

A. Adaptive Critic Applied to Design of Controller Agent
In the (now “classical”) use of adaptive critics to design a

controller, during training of a controller agent, search takes
place in its parameter space (for NNs, parameters =
weights), where CF is the Bellman J function. The Utility
measure (“cost”) used to calculate J is a function of the plant
state variables (sometimes also of the control variables) and
some stipulated “desired” values for each.

After the training/design process converges, the resulting
controller agent provides actions (control inputs to plant)
that cause the plant to take a trajectory in state space with
minimum cost-to-go at each state. To accomplish this task,
the controller in a sense has embedded within it de facto
knowledge of the system’s dynamics and physical proper-
ties.

B. Adaptive Critic applied to design of Context Discerner
Agent

In the current application of adaptive critics, during train-
ing of the context discerner agent, search again takes place
in its parameter space with the Bellman J function as CF.
The Utility measure used to calculate J is a function of the
difference between the plant’s state values and the state val-
ues of the model. [If the stipulated “desired” values men-
tioned above are provided by a model, as in a model-
reference control system, then these two statements are par-
allel ones.]

After the training/design process converges, the resulting
context discerner agent provides actions (adjustments to
model parameter values) that cause the parametric model to
take a trajectory in model parameter space with minimum
cost-to-go at each state (note: due to the dynamics-free na-
ture of the summing node in the CDN, this trajectory may be
discontinuous – see section V for more details). To accom-
plish this task, the context discerner has de facto internalized
knowledge of associations between parameter values and
plant/model trajectory deviations.

XI. Future Experiments

The high quality performance of the CDN demonstrated
in Figs. 3 & 4 is based on a training and test protocol that
provided information to the CDN from a broad sampling of
the pole-cart’s state space (via the random excitations).
However, in a preliminary experiment that embedded the
CDN in a control environment wherein only a small part of
state space was “visited” during operation (after training),
the CDN’s performance degraded substantially. This obser-
vation suggests a difficulty akin to what is known in the con-
trol literature as persistence of excitation.

A future exploration is being planned to address this is-
sue. A training protocol is to be developed that incorporates
samples of operational sequences of states (trajectories) ob-
tained from a pole-cart that is functioning with a reasonably
good controller. This will reduce the volume of state space
that we will train over, but we expect better results when
performing context discernment over continuous state trajec-
tories. More importantly, the use of state trajectory segments
will allow us to use a recurrent neural network to good effect
for the CDN. This should buy us two things. One, it is com-
pelling to think that a “memory” of the history of the current
state trajectory and CD(t) will be helpful in determining the
next ∆CD(t). Second, by switching to a recurrent NN, an al-
ternative training algorithm (Back Propagation of Utility
Through Time) may be used that will likely provide a more
efficient training process than the DHP method currently
used, and hopefully allow for faster training, with results that
are at least as good as the ones obtained with DHP.

References

[1] Bellman, R.E., (1957), Dynamic Programming, Prince-
ton University Press.

[2] Lendaris, G.G. & J.C. Neidhoefer, (2004) "Guidance in
the Use of Adaptive Critics for Control", Ch. 4 in Hand-
book of Learning and Approximate Dynamic Program-
ming, Si, Barto, Powell, & Wunsch, Eds., Wiley, &
IEEE Press.

[3] Prokhorov, D., L. Feldkamp, & I. Tyukin, (2002) “Adap-
tive Behavior with Fixed Weights in Recurrent Neural
Networks: An Overview”, Proc. Of International Joint
Conference on Neural Networks (IJCNN), WCCI’02,
Honolulu, Hawaii, May, pp. 2018-2022.

[4] Santiago, R.A. & G.G. Lendaris (2004). "Context Dis-
cerning Multifunction Networks: Reformulating fixed
weight neural networks", Proceedings of the Interna-
tional Joint Conference on Neural Networks
(IJCNN’04), Budapest, Hungary, IEEE Press.

[5] Santiago, R. (2005), “Context Discernment Through
Reinforcement Learning And Recurrent Networks”,
Technical Report, NW Computational Intelligence Lab,
Portland State University, http://www.nwcil.pdx.edu

[6] Sutton, S. & A. Barto, (1998), Reinforcement Learning:
An Introduction, MIT Press

