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Abstract

We develop the Kernel Multitask Latent Analysis (KMLA) method for
modeling many-to-many relationships between inputs and responses, and
show how it can be applied to inductive transfer problems in biosepa-
rations. KMLA performs dimensionality reduction targeted towards a
multitask loss function much like Kernel Partial Least Squares (KPLS).
KPLS is limited to least squares multiple regression while KMLA is a
more general approach that can utilize widely-used convex loss func-
tions for inference tasks. KMLA achieves inductive transfer between
tasks by forcing the tasks to share the same latent features. In the biosep-
aration problem, the goal is to predict the retention times for a novel
anion-chromatography system; only a few retention times are known for
the target systems, while many protein retention times are known for the
related systems. KMLA is used with semi-supervised loss functions that
do not require that all proteins have responses for all the systems. Results
are presented for both regression and ranking losses. KMLA significantly
outperforms both single task KMLA and KPLS, and the existing missing
response algorithm for multitask PLS extended to kernels.

1 Introduction

We focus on how a novel kernel method for constructing many to many mappings can be
used for inductive transfer. Prior work has demonstrated that multitask learning (MTL),
e.g. training related tasks in parallel, can improve generalization. Learning methods that
can perform many-to-many mappings using some sort of task relatedness can be used for
multitask learning. In MTL for neural networks, the multiple tasks share common hidden
units [2]. MTL kernel learning methods enforce task relatedness by using an appropriate
joint capacity control such as such as minimizing the variance of the weights of the SVM for
each task [4]. Partial least squares (PLS) [5], a spectral regression method from statistics,
has been successfully used for inductive transfer for industrial applications [9]. In PLS,
the multiple tasks are modeled using a common set of latent features consisting of linear
combinations of the original variables.

Kernel Multitask Latent Analysis (KMLA) is a general kernel method for constructing
many-to-many mappings for arbitrary loss functions similar to PLS and single-task Boosted



Latent Features [8]. KMLA uses dimensionality reduction for capacity control and task
relatedness. For least squares loss, KMLA reduces to KPLS. KMLA’s predictive functions
are linear combinations of orthogonal latent features in the kernel defined feature space
targeted to a given loss function. Here we use KMLA with a semi-supervised loss function
that does not require the responses to be known for all tasks.

We demonstrate how the proposed KMLA approach can be used for MTL problems in
bioseparation. The development of efficient bioseparation processes for the production
of high-purity biopharmaceuticals is one of the most pressing challenges facing the phar-
maceutical and biotechnology industries. Developing elution or displacement systems to
remove closely related impurities often requires a significant amount of experimentation
to find the proper combination of stationary phase material, salt type and/or displacers to
achieve sufficient selectivity and productivity in these separation techniques. Thus the mul-
tiple tasks are to model retention times of ion-exchange chromatography systems that vary
in displacers and salt types used [11, 10, 7].

2 Multitask Latent Analysis

For simplicity, we use linear MLA instead of KMLA for illustration here. KMLA is the
nonlinear extension to MLA using the kernel defined feature space instead of the original
input space. MLA constructs a reduced-rank linear function that minimizes or approxi-
mately minimizes the loss function:

minB,µ Loss(Y,XB + eµ) (1)

for a given set of data with inputX ∈ Rm×n andk responses (one for each ofk tasks)
Y ∈ Rm × k, and loss functionLoss : Rm×n → Rm×k. The row vectorµ accounts
for any linear shifts in the response. Like reduced-rank regression, PLS and BLF, MLA
regularizes the solution by restrictingB to be ranklat and by forcing extracted latent
variables to be orthogonal. It constructslat number of linear orthogonal latent variables,
T = XA with T′T = I, and makes a prediction coefficient matrixB such thatB = AC′,
which approximately solves Equation (1). Adopting the proof in [8], one can show, MLA
solves (1) in a finite number of iterations. Regularization and task relatedness is achieved
by forcing the problems to use the shared set of latent features,T.

We assume that the loss function is afully separableconvex differentiable or subdiffer-
entiable loss function. This class of loss functions is very large, including convex loss
functions commonly used for regression, classification, novelty-detection, and ranking.
Fully separable means that the loss function can be written as a sum ofm × k individ-
ual errors for each observation and response.Y is the original responses andF is the
predicted responses.Loss denotes the MTL loss function, andL denotes its compo-
nents. The loss for each pointi and taskj has a given weightδij ≥ 0 allowing points
and tasks to have different weights. Settingδij = 0 effectively means the response of
point i on taskj is unknown, allowing the training data to be used for different tasks.
Formally the loss function isLoss(Y,F) =

∑m
i=1

∑k
j=1 δijL(Yij ,Fij). The functionL

can be any appropriate error measure for a data point or pairs of data points. In a slight
abuse of notation we will let∇ and∂ reference gradients or appropriate subgradients, e.g.
(∇Loss(Y,F))ij = δij∂L(Yij ,Fij)

∂Fij
.

MLA is subspace algorithm closely related to a nonlinear conjugate gradient algorithm.
Alternatively, one can think of it as a multitask generalization of the BLF [8] boosting
algorithm that achieves inductive transfer by forcing the tasks to be linear combinations of
on the same set of weak hypotheses. In MLA, the weak hypothesis are linear functions in
feature space that are explicitly forced to be orthogonal. Thus MLA is a dimensionality
reduction algorithm. One can prove that MLA converges in at most rankk iterations to a



solution of the original problem and demonstrate empirically the convergence rate is much
faster MLA then a gradient descent boosting algorithm. The orthogonality is achieved by
deflation. Linear MLA is given in the appendix. Like BLF, MLA is readily to be kernelized
and allows the latent features to be nonlinear.

3 Protein Retention Times

We predict the protein retention times for ion-exchange chromatography systems. The goal
is to predict the retention times of one system given the results for 17 different proteins on
5 other systems and 10 proteins on this system. There are 10 descriptors for each protein.
The inputX is a17 × 10 matrix and the outputY is a17 × 6 matrix. The descriptors are
calculated using RECON (an algorithm for the rapid reconstruction of molecular charge
densities and charge density-based electronic properties of molecules) [1] and drug discov-
ery software Molecular Operating Environment (MOE) [3]. Each protein has six retention
times measured in systems under the combinations of two resins (SOURCE and FFSEPH)
and three buffer salts (Na+, Ca2+, NH4+). Thus the six responses/tasks (measured in min-
utes) are: FFSEPH-NA (R1), SOURCE-NA (R2), FFSEPH-CA (R3), SOURCE-CA (R4),
FFSEPH-NH4 (R5) and SOURCE-NH4 (R6). See [10, 7] for more details.

The experiments were designed to demonstrate the inductive transfer of five tasks to a sixth
target task. For the target response, the training response consists of 10 randomly selected
points for the target data and the remaining 7 proteins are used for test. Then the task is
to accurately predict the retention times of the test target set using all the proteins, the 10
known retention times for the target task, and all the retention times for the nontarget tasks.
The experiment was repeated for each task for 20 different training and testing partitions
and the average errors or accuracies are reported. Since the number of training points is
extremely small, we set the number of latent features to 2 for all multi-task algorithms and
1 for single-task algorithms.

The first experiment used KMLA with least squares regression loss withδij = 0 for test
proteinsi in the target taskj andδij = 1 otherwise. Figure 1 provides sample results for
the Gaussian kernel. KMLA was compared to single task KPLS trained with just the 10
labelled points. In addition we compare it with multitask KPLS with the test responses
treated as missing values using the approach of [9] generalized to kernels. During training,
multitask KPLS estimates each missing test responses for point i and taskj as the mean
of the average known response for pointi and the average known response for taskj. The

Q-squared statistic on the testing data is reported.Q2 =
∑m

i=1(yi−ŷi)
2

∑m
i=1(yi−ȳ)2 (yi is the real value

andŷi is the prediction) andQ2 near 0 is better. One can clearly see that using multitask
learning with either KPLS missing or KMLA is a dramatic improvement over single task
learning, with KMLA being the preferred approach.
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Figure 1: Results for KPLS and KMLA with 10 training points on target task and 17
training points on on other tasks



Table 1: Single mode and Multi-mode KMLA ranking loss: Kendall’sτ vs. different
training size (Gaussian kernelσ = 0.5 and Fac=2)

Multi task Single task
TrSz 5 8 11 14 5 8 11 14
Res1 0.6924 0.6944 0.7267 0.9333 0.2652 0.3778 0.44 0.5
Res2 0.8424 0.8333 0.8467 0.9333 0.3167 0.4806 0.5267 0.5333
Res3 0.6136 0.7444 0.7333 0.8333 0.2621 0.4722 0.5 0.5
Res4 0.7227 0.8 0.78 0.8667 0.303 0.5 0.5133 0.6667
Res5 0.753 0.7722 0.8267 0.8333 0.2621 0.4361 0.46 0.5333
Res6 0.8182 0.8139 0.86 0.9333 0.3076 0.4667 0.52 0.5333

We also treated the chromatography problem as a ranking problem. We examined each
pair of proteins and the protein with higher retention time was considered to be higher
ranked. KMLA was extended to use the paired ranking loss used in the support vector
machine type model in [6]. For ranking, Kendall’sτ for the testing data is computed to
compare methods, with results near 1 as best. The same parameters were used as for the
regression case. Table 1 shows results for different training set sizes of the target response.
The remaining proteins for the target response are considered to be the testing data. Since
KPLS is limited to regression, results are shown for KMLA trained on a single tasks and
KMLA trained on multiple tasks. The results show that multitask learning outperforms
single task learning and that the faster rise in the learning curve for multitask KMLA over
single task KMLA indicates inductive transfer.

4 Discussion

KMLA provides a flexible nonlinear semi-supervised learning framework that builds on
the PLS algorithm already successfully used for MTL. We provide here sample results
for a chromatography problem with six responses treated both as a regression and ranking
problem. The results show dramatic increases in accuracy for MTL versus single task.
Much less data is required to achieve the same or better accuracy. Space does not permit us
to present the more extensive testing on this and another chromatography problem which
further support these conclusions. The KMLA algorithm has the advantage that it can be
used in both semi-supervised and supervised models and it is computationally efficient.
Like principal components or canonical correlation analysis, KMLA yields latent features
that can be used for visualization or as features in other learning algorithms, but KMLA’s
features are targeted to a specific loss function and learning task. Note KMLA does not
require the responses for each task to be known for all training points. Exploiting this
property, we also have developed an efficient method for selecting the number of latent
features and kernel parameters based on leaving out data in the non-target tasks with more
data. KMLA is an efficient greedy algorithm. An open question is whether seeking globally
optimal solutions to the reduced rank loss problem would yield better results.
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Appendix

Algorithm 1 The Multitask Latent Analysis Algorithm
GivenX, Y, Loss, andlat (the number of LV)

1. Let µ ∈ argminµLoss(Y, eµ) andF0 = eµ wheree is aRm vector of ones
andµ is a row vector

2. Get the first negative gradient:D1 = −∇Loss(Y,F0)
3. For i=1 : lat

4. Compute best rank-one descent direction using SVD or power method:

wi, s ∈ argminw,s
Di ·Xws′

‖w‖‖s‖ (2)

5. Save projection W = [W wi].

6. Compute latent variableti = Xiwi, ti = ti

‖ti‖ , T = [T ti]

7. Deflate:pi = Xi
′ti,P = [P pi], Xi+1 = Xi − tipi

′

8. RefitC, µ̂: (C, µ̂) ∈ argminC,µ̂Loss(Y,TC′ + eµ̂)

9.

10. Compute negative gradient matrix:Di+1 = −∇Loss(Y,Fi)
11. If X′Di+1 = 0, break because optimal

12. End

13. Compute weight coefficientsA in the original space:A = W(P′W)−1, and
construct final features:T(X) = XA = XW(P′W)−1

14. Compute prediction coefficientsB in the original (undeflated) space:B = AC′ =
W(P′W)−1C′

15. Final


