
Sparsity Models for Multi-Task LearningJian ZhangLanguage Tehnologies InstituteShool of Computer SieneCarnegie Mellon University5000 Forbes Ave., Pittsburgh, PA 15213, USADeember 1, 2005AbstratMany real world mahine learning problems an be reast as multi-task learning problems, whose ob-jetive is to utilize the relations among those tasks in order to obtain a better generalization performanethan learning them individually. In this paper we present two probabilisti models for solving multi-tasklearning problems whih have a sparsity underlying assumption. In partiular, our models are speialases of hierarhial Bayesian models whih assoiate the generation of task parameters of eah preditionfuntion with a set of latent variables. By exploring di�erent statistial assumptions of distributions oflatent variables and the linear mixing matrix, we are able to ahieve two types of sparsities: (1) eahpredition funtion is a sparse linear ombination of a set of basis funtions; (2) eah predition funtionis a linear ombination of a set of basis funtions whih are sparse themselves. In this paper we fouson the seond type of sparsity models. Experiments on multi-labeled text lassi�ation demonstrate thee�etiveness of the proposed models over the traditional single task learning approah.1 IntrodutionThe traditional supervised learning problem tries to estimate a funtion f : X 7→ Y, where X is theinput spae and Y = R for regression or Y = {C1, C2, . . . , CM} for lassi�ation, given a training set
D = {(x1, y1), . . . , (xn, yn)}. Given K tasks, the objetive of multi-task learning is to estimate K preditionfuntions f (1), f (2), . . . , f (K) jointly (as opposed to individually) so that a better generalization performanean be ahieved ompared to learning eah task independently. It is often the ase that eah preditionfuntion f (k) : X 7→ Y(k), e.g. they share the same input spae X but not neessarily the output spae.Multi-task learning has been both an relatively old [7, 5℄ and new researh topi [9, 8, 2, 6, 1℄. More orless, multi-task learning approahes are based on the assumption that tasks are related in some way so thatinformation an be �borrowed�. The neessity of this assumption is also easy to be seen as it is unlikelyto gain by learning jointly from K totally irrelevant tasks. Therefore, it is natural to explore di�erentassumptions about how tasks are related, and design orresponding models whih are suitable for thosemulti-task learning �senarios�.There are many potential interesting appliations of multi-task learning. For example, in text lassi�ationit is often the ase that eah doument an belong to multiple ategories, whih is also known as �multi-label�text lassi�ation. Due to the relatedness among those ategories, we an treat the lassi�ation problemwith respet to eah ategory as a task and formulate a multi-task learning problem. Similarly, we an alsoformulate the multiple-user anti-spam email �ltering as a multi-task learning problem where eah task isthe anti-spam email �ltering problem with respet to a partiular user. Multi-task learning approahes areadvantages for this problem as those individual tasks are di�erent but very losely related. Other possibleappliations inlude prediting many stok pries, onjoint analysis, et.1



In this paper we present a new approah for sparse formulations of multi-task learning models. Our modelsare based on a lean, well-motivated latent variable generative model, in whih tasks parameters are assumedto be generated from a linear mixing of a set of latent variables plus some random noise. In partiular, wean ahieve two types of sparsities within this formulation, by imposing di�erent statistial assumptionson the model: (1) eah resulting lassi�er is a sparse linear ombination of some basis lassi�ers; (2) eahresulting lassi�er is a linear ombination of a set of basis lassi�ers whih are sparse. In this paper we willfous on the latter as the former is already presented in detail in our previous work [9℄.2 Probabilisti ModelsSuppose that we use θk to index the predition funtion for the k-th task, and in this paper we limit our dis-ussion to linear methods (e.g. f
(k)
θk

(x) = θT
k x) sine the generalization to non-linear ase is straightforward.We assume the following generative model for the θk's [10℄:

θk = Λsk + ek

s1, . . . , sK ∼ p(s1, . . . , sK |Φ) (1)
ek ∼ N (0, Ψ)where sk ∈ R

H×1 (k = 1, 2, . . . , K) are latent variables whih follow a distribution parametrized by Φ;
Λ ∈ R

F×H is a linear transformation matrix on sk's; ek ∈ R
F×1 is usually assumed to be Gaussian randomnoise. Note that θk is omposed of two parts: the ommon, sharing omponent Λsk and the task spei�omponent ek. This is important sine it allows to have a good generalization power when the number oftraining examples per task goes to in�nity, in whih ase we would like to give eah task enough freedomto grow respetively. Also notie that when Λsk = 0, this framework degenerates trivially to the traditionalmodel for single task learning (suh as logisti regression). We an fully speify the generative model formulti-task learning by assuming the logisti regression as the lassi�ation model (or more generally anysuitable generalized linear model [4℄)

y ∼ B(σ(θT
k x))where B(.) denotes Bernoulli distribution, and σ(t) = (1 + exp(−t))−1 is the logisti funtion. There are atleast two possible ways to ahieve sparsity models based on the above generative model framework:1. Assume a sparse prior for sk's suh as Laplae, e.g.

p(sk) ∝
H
∏

h=1

exp(−|sk,h|).This essentially is assuming that eah target lassi�er is a sparse linear ombination of basis lassi�ers,and details for this model an be found in [9℄.2. Instead of assuming Λ to be �xed as in equation (1), we would assume it to be random suh that
p(Λ.j) ∝

F
∏

f=1

exp(−|Λf,j |),where Λ.j denotes the jth olumn of matrix Λ. That is, we assume that eah olumn vetor of Λ followsa sparse prior distribution suh as Laplae. By performing a point estimation Λ̂, this model will leadto a set of basis lassi�ers (the set of olumn vetors of Λ an be thought as basis lassi�ers) that aresparse.After speifying the probabilisti model, we an apply either empirial Bayes approah or point estimationapproah to learn model parameters. In either ase, the basi intuition is to realize that we only need to2
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Figure 1: LEFT: Text lassi�ation results on RCV1; RIGHT: Average sparsity rate of elements in Λ̂.iteratively estimate θk's and sk's for eah task and then Λ and Ψ for all tasks. Here we fous on pointestimation method whih is more e�net for dealing with high-dimensional data like text. However, pointestimation for the ovariane matrix Ψ of ek's is not well-behaved as it goes to 0 and thus we annot get asensible estimation Ψ̂. Instead, we restrit the form of Ψ = λI to be diagonal and isotropi in our algorithm,and use ross-validation as an outer loop to tune the salar parameter λ just as in traditional single tasklearning problems. Proedurely1. Update the estimates θ̂k and ŝk given Λ̂ omputed in the previous step (onditioned on Λ and Ψ, taskparameters will deouple and we an ondut this step per task):
{θ̂k, ŝk} = arg max

θk,sk

{

1

nk

nk
∑

i=1

L(y
(k)
i , θT

k x
(k)
i ) + logN (θk | Λ̂sk, Ψ)

}

, k = 1, 2, . . . , KThis is essentially equivalent to the regularized linear methods for lassi�ation, and we an apply anysuitable optimization algorithm to solve it, suh as onjugate gradient or quasi-Newton method.2. Given the updated θ̂k's and ŝk's:
Λ̂ = argmax

Λ

{

K
∑

k=1

logN (θ̂k | Λŝk, Ψ) + log p(Λ)

}Plugging in the prior of Λ, it leads to a set of Lasso-style problems:
Λ̂ = arg min

Λ







K
∑

k=1

(θ̂k − Λŝk)T (θ̂k − Λŝk) + γ

H
∑

h=1

F
∑

f=1

|Λf,h|





where γ ontrols how sparse the solution Λ̂ is.3 Experimental ResultsTo demonstrate the e�etiveness of the model, we onduted experiments on multi-label text lassi�ationtasks. Here we use the RCV1 dataset [3℄, whih is one of the new benhmark olletion for text lassi�-ation. The TOPIC ode hierarhy ontains more than one hundred ategories (H , the dimensionality of3



latent variable, is set to 10 in all our experiments), and we treat the lassi�ation problem with respet toeah ategory as a task. Sine multi-task learning is mostly e�etive when the number of training examplesper task is small (as an be seen from the fat that MLE is asymptotially optimal), we ondut experimentsby varying the number of training examples. We randomly selet 10k test douments as our testset, andlassi�ation results are evaluated using the F1 measure, whih is the typially used evaluation measurefor text lassi�ation. The lassi�ation loss funtion we used here is the logisti loss, and we ompare ouralgorithm (MTL) with the standard regularized logisti regression for single task learning (STL). Regular-ization parameter of STL was hosen through ross validation, and for MTL it was hosen to math theprior variane of θk's. Results are shown in the left graph of Figure 1, from whih we an see that our MTLmodel is more e�etive than the orresponding STL algorithm in terms of predition auray.Furthermore, our model also has the sparsity property1. In some sense, sparsity re�ets the degree of freedomof the �tted model and thus measures the model omplexity. Although the atual answer depends on thenumber of training examples, investigation on the average number of non-zero elements of Λ̂ does suggestthat we ahieved a sparse solution, as also shown in Figure 1.4 Conluding RemarksIn this paper we present a probabilisti framework whih an be used for a variety of multi-task learningsenarios [10℄, and fous on models whih an lead to sparse solutions. We onduted experiments on multi-label text lassi�ation, and results show the advantages of the proposed models over single task learningmethods. In the future we would like to investigate more �exible models for di�erent multi-task learningsenarios, as well as a systemati way of automatially hoosing the dimension H of the latent variable sk.Furthermore, we would like to explore more interesting appliations of various multi-task senarios.Referenes[1℄ R. Ando and T. Zhang. A Framework for Learning Preditive Strutures from Multiple Tasks andUnlabeled Data. Tehnial Report RC23462, IBM T.J. Watson Researh Center, 2004.[2℄ T. Evgeniou and M. Pontil. Regularized Multitask Learning. Pro. of 17th SIGKDD Conferene onKnowledge Disovery and Data Mining, 2004.[3℄ D. Lewis, Y. Yang, T. Rose and F. Li. RCV1: A New Benhmark Colletion for Text CategorizationResearh. Journal of Mahine Learning Researh 5:361-397, 2004.[4℄ P. MCullagh and J. A. Nelder. Generalized Linear Models (2nd edition), Chapman & Hall/CRC, 1989.[5℄ D. L. Silver. The Seletive Transfer of Neural Network Task Knowledge. Ph.D. Thesis, The Universityof Western Ontario, London, Ontario, Canada.[6℄ T. W. Teh, M. Seeger and M. I. Jordan. Semiparametri Latent Fator Models. AISTATS 2005.[7℄ S. Thrun and L. Pratt (eds). Learning to Learn, Kluwer Aademi Publishers, 1998.[8℄ K. Yu, V. Tresp and A. Shwaighofer. Learning Gaussian Proesses from Multiple Tasks. In Proeedingsof 22nd ICML, Bonn, Germany, 2005.[9℄ J. Zhang, Z. Ghahramani and Y. Yang. Learning Multiple Related Tasks using Latent IndependentComponent Analysis. NIPS 2005.[10℄ J. Zhang. A Probabilisti Framework for Multi-Task Learning. Ph.D. Thesis Proposal, Carnegie MellonUniversity.1In our experiments γ was set so that half of the prior variane of θk omes from Λsk and half omes from ek .4


