
Sparsity Models for Multi-Task LearningJian ZhangLanguage Te
hnologies InstituteS
hool of Computer S
ien
eCarnegie Mellon University5000 Forbes Ave., Pittsburgh, PA 15213, USADe
ember 1, 2005Abstra
tMany real world ma
hine learning problems 
an be re
ast as multi-task learning problems, whose ob-je
tive is to utilize the relations among those tasks in order to obtain a better generalization performan
ethan learning them individually. In this paper we present two probabilisti
 models for solving multi-tasklearning problems whi
h have a sparsity underlying assumption. In parti
ular, our models are spe
ial
ases of hierar
hi
al Bayesian models whi
h asso
iate the generation of task parameters of ea
h predi
tionfun
tion with a set of latent variables. By exploring di�erent statisti
al assumptions of distributions oflatent variables and the linear mixing matrix, we are able to a
hieve two types of sparsities: (1) ea
hpredi
tion fun
tion is a sparse linear 
ombination of a set of basis fun
tions; (2) ea
h predi
tion fun
tionis a linear 
ombination of a set of basis fun
tions whi
h are sparse themselves. In this paper we fo
uson the se
ond type of sparsity models. Experiments on multi-labeled text 
lassi�
ation demonstrate thee�e
tiveness of the proposed models over the traditional single task learning approa
h.1 Introdu
tionThe traditional supervised learning problem tries to estimate a fun
tion f : X 7→ Y, where X is theinput spa
e and Y = R for regression or Y = {C1, C2, . . . , CM} for 
lassi�
ation, given a training set
D = {(x1, y1), . . . , (xn, yn)}. Given K tasks, the obje
tive of multi-task learning is to estimate K predi
tionfun
tions f (1), f (2), . . . , f (K) jointly (as opposed to individually) so that a better generalization performan
e
an be a
hieved 
ompared to learning ea
h task independently. It is often the 
ase that ea
h predi
tionfun
tion f (k) : X 7→ Y(k), e.g. they share the same input spa
e X but not ne
essarily the output spa
e.Multi-task learning has been both an relatively old [7, 5℄ and new resear
h topi
 [9, 8, 2, 6, 1℄. More orless, multi-task learning approa
hes are based on the assumption that tasks are related in some way so thatinformation 
an be �borrowed�. The ne
essity of this assumption is also easy to be seen as it is unlikelyto gain by learning jointly from K totally irrelevant tasks. Therefore, it is natural to explore di�erentassumptions about how tasks are related, and design 
orresponding models whi
h are suitable for thosemulti-task learning �s
enarios�.There are many potential interesting appli
ations of multi-task learning. For example, in text 
lassi�
ationit is often the 
ase that ea
h do
ument 
an belong to multiple 
ategories, whi
h is also known as �multi-label�text 
lassi�
ation. Due to the relatedness among those 
ategories, we 
an treat the 
lassi�
ation problemwith respe
t to ea
h 
ategory as a task and formulate a multi-task learning problem. Similarly, we 
an alsoformulate the multiple-user anti-spam email �ltering as a multi-task learning problem where ea
h task isthe anti-spam email �ltering problem with respe
t to a parti
ular user. Multi-task learning approa
hes areadvantages for this problem as those individual tasks are di�erent but very 
losely related. Other possibleappli
ations in
lude predi
ting many sto
k pri
es, 
onjoint analysis, et
.1



In this paper we present a new approa
h for sparse formulations of multi-task learning models. Our modelsare based on a 
lean, well-motivated latent variable generative model, in whi
h tasks parameters are assumedto be generated from a linear mixing of a set of latent variables plus some random noise. In parti
ular, we
an a
hieve two types of sparsities within this formulation, by imposing di�erent statisti
al assumptionson the model: (1) ea
h resulting 
lassi�er is a sparse linear 
ombination of some basis 
lassi�ers; (2) ea
hresulting 
lassi�er is a linear 
ombination of a set of basis 
lassi�ers whi
h are sparse. In this paper we willfo
us on the latter as the former is already presented in detail in our previous work [9℄.2 Probabilisti
 ModelsSuppose that we use θk to index the predi
tion fun
tion for the k-th task, and in this paper we limit our dis-
ussion to linear methods (e.g. f
(k)
θk

(x) = θT
k x) sin
e the generalization to non-linear 
ase is straightforward.We assume the following generative model for the θk's [10℄:

θk = Λsk + ek

s1, . . . , sK ∼ p(s1, . . . , sK |Φ) (1)
ek ∼ N (0, Ψ)where sk ∈ R

H×1 (k = 1, 2, . . . , K) are latent variables whi
h follow a distribution parametrized by Φ;
Λ ∈ R

F×H is a linear transformation matrix on sk's; ek ∈ R
F×1 is usually assumed to be Gaussian randomnoise. Note that θk is 
omposed of two parts: the 
ommon, sharing 
omponent Λsk and the task spe
i�

omponent ek. This is important sin
e it allows to have a good generalization power when the number oftraining examples per task goes to in�nity, in whi
h 
ase we would like to give ea
h task enough freedomto grow respe
tively. Also noti
e that when Λsk = 0, this framework degenerates trivially to the traditionalmodel for single task learning (su
h as logisti
 regression). We 
an fully spe
ify the generative model formulti-task learning by assuming the logisti
 regression as the 
lassi�
ation model (or more generally anysuitable generalized linear model [4℄)

y ∼ B(σ(θT
k x))where B(.) denotes Bernoulli distribution, and σ(t) = (1 + exp(−t))−1 is the logisti
 fun
tion. There are atleast two possible ways to a
hieve sparsity models based on the above generative model framework:1. Assume a sparse prior for sk's su
h as Lapla
e, e.g.

p(sk) ∝
H
∏

h=1

exp(−|sk,h|).This essentially is assuming that ea
h target 
lassi�er is a sparse linear 
ombination of basis 
lassi�ers,and details for this model 
an be found in [9℄.2. Instead of assuming Λ to be �xed as in equation (1), we would assume it to be random su
h that
p(Λ.j) ∝

F
∏

f=1

exp(−|Λf,j |),where Λ.j denotes the jth 
olumn of matrix Λ. That is, we assume that ea
h 
olumn ve
tor of Λ followsa sparse prior distribution su
h as Lapla
e. By performing a point estimation Λ̂, this model will leadto a set of basis 
lassi�ers (the set of 
olumn ve
tors of Λ 
an be thought as basis 
lassi�ers) that aresparse.After spe
ifying the probabilisti
 model, we 
an apply either empiri
al Bayes approa
h or point estimationapproa
h to learn model parameters. In either 
ase, the basi
 intuition is to realize that we only need to2
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Figure 1: LEFT: Text 
lassi�
ation results on RCV1; RIGHT: Average sparsity rate of elements in Λ̂.iteratively estimate θk's and sk's for ea
h task and then Λ and Ψ for all tasks. Here we fo
us on pointestimation method whi
h is more e�
net for dealing with high-dimensional data like text. However, pointestimation for the 
ovarian
e matrix Ψ of ek's is not well-behaved as it goes to 0 and thus we 
annot get asensible estimation Ψ̂. Instead, we restri
t the form of Ψ = λI to be diagonal and isotropi
 in our algorithm,and use 
ross-validation as an outer loop to tune the s
alar parameter λ just as in traditional single tasklearning problems. Pro
edurely1. Update the estimates θ̂k and ŝk given Λ̂ 
omputed in the previous step (
onditioned on Λ and Ψ, taskparameters will de
ouple and we 
an 
ondu
t this step per task):
{θ̂k, ŝk} = arg max

θk,sk

{

1

nk

nk
∑

i=1

L(y
(k)
i , θT

k x
(k)
i ) + logN (θk | Λ̂sk, Ψ)

}

, k = 1, 2, . . . , KThis is essentially equivalent to the regularized linear methods for 
lassi�
ation, and we 
an apply anysuitable optimization algorithm to solve it, su
h as 
onjugate gradient or quasi-Newton method.2. Given the updated θ̂k's and ŝk's:
Λ̂ = argmax

Λ

{

K
∑

k=1

logN (θ̂k | Λŝk, Ψ) + log p(Λ)

}Plugging in the prior of Λ, it leads to a set of Lasso-style problems:
Λ̂ = arg min

Λ







K
∑

k=1

(θ̂k − Λŝk)T (θ̂k − Λŝk) + γ

H
∑

h=1

F
∑

f=1

|Λf,h|





where γ 
ontrols how sparse the solution Λ̂ is.3 Experimental ResultsTo demonstrate the e�e
tiveness of the model, we 
ondu
ted experiments on multi-label text 
lassi�
ationtasks. Here we use the RCV1 dataset [3℄, whi
h is one of the new ben
hmark 
olle
tion for text 
lassi�-
ation. The TOPIC 
ode hierar
hy 
ontains more than one hundred 
ategories (H , the dimensionality of3



latent variable, is set to 10 in all our experiments), and we treat the 
lassi�
ation problem with respe
t toea
h 
ategory as a task. Sin
e multi-task learning is mostly e�e
tive when the number of training examplesper task is small (as 
an be seen from the fa
t that MLE is asymptoti
ally optimal), we 
ondu
t experimentsby varying the number of training examples. We randomly sele
t 10k test do
uments as our testset, and
lassi�
ation results are evaluated using the F1 measure, whi
h is the typi
ally used evaluation measurefor text 
lassi�
ation. The 
lassi�
ation loss fun
tion we used here is the logisti
 loss, and we 
ompare ouralgorithm (MTL) with the standard regularized logisti
 regression for single task learning (STL). Regular-ization parameter of STL was 
hosen through 
ross validation, and for MTL it was 
hosen to mat
h theprior varian
e of θk's. Results are shown in the left graph of Figure 1, from whi
h we 
an see that our MTLmodel is more e�e
tive than the 
orresponding STL algorithm in terms of predi
tion a

ura
y.Furthermore, our model also has the sparsity property1. In some sense, sparsity re�e
ts the degree of freedomof the �tted model and thus measures the model 
omplexity. Although the a
tual answer depends on thenumber of training examples, investigation on the average number of non-zero elements of Λ̂ does suggestthat we a
hieved a sparse solution, as also shown in Figure 1.4 Con
luding RemarksIn this paper we present a probabilisti
 framework whi
h 
an be used for a variety of multi-task learnings
enarios [10℄, and fo
us on models whi
h 
an lead to sparse solutions. We 
ondu
ted experiments on multi-label text 
lassi�
ation, and results show the advantages of the proposed models over single task learningmethods. In the future we would like to investigate more �exible models for di�erent multi-task learnings
enarios, as well as a systemati
 way of automati
ally 
hoosing the dimension H of the latent variable sk.Furthermore, we would like to explore more interesting appli
ations of various multi-task s
enarios.Referen
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