Transfer in Variable-Reward Hierarchical
Reinforcement Learning

Neville Mehta Sriraam Natarajan Prasad Tadepalli Alan Fern

School of Electrical Engineering and Computer Science
Oregon State University
Corvallis, OR 97333
{nmeht ane, nat ar asr, t adepal |, af ern}@ecs. or egonst at e. edu

Abstract

We consider the problem of transferring learned knowledgerey
Markov Decision Processes that share the same transitizeinaigs but
different reward functions. In particular, we assume tbatard functions
are described as linear combinations of reward featureisthat only the
feature weights vary among MDPs. We introduce Variable-&eviHi-
erarchical Reinforcement Learning (VRHRL), which leveza@ cache
of learned policies to speed up learning in this setting hWititable de-
sign of the task hierarchy, VRHRL can achieve better tranfan its
non-hierarchical counterpart.

1 Introduction

Most work in Reinforcement Learning (RL) addresses the lprobof solving a single
Markov Decision Process (MDP) defined principally by its dyrics (a transition func-
tion) and a reward function. The focus on solving individWdDPs makes it difficult, if
not impossible, to learn cumulatively, i.e., to transfeefuknowledge from one MDP to
another. In this paper, we considariable-reward transfer learningvhere the objective
is to speed up learning in a new MDP by transferring expeddram previous MDPs that
share the same dynamics but different reward functions attiqular, we assume that re-
ward functions are weighted linear combinations of rewaatdres, and that threward
weightsvary across MDPs.

MDPs that share the same dynamics but have different revierdtisres arise in many
contexts. For example, different agents operating in a doswech as driving might have
different preference functions although they are all camséd by the same physics [1].
Even when the reward function can be defined objectively, igning as many games as
possible in chess, usually the experimenter needs to pratiter “shaping rewards”, such
as the value of winning a pawn, to encourage Reinforcemesntriiieg (RL) systems to do
useful exploration. Each such shaping reward function earidwed as defining a different
MDP in the same family. Reward functions can also be seen akspecifications for
agents such as robots and Internet search engines. Altetyadifferent reward functions
may arise externally based on difficult-to-predict chanigethe world, e.g., raising gas
prices or declining interest rates that warrant lifestylargyes.

For such variable-reward MDPs, previous work [4] has shoawm to leverage the reward
structure in order to usefully transfer value functionseetively speeding-up learning. In
this paper, we extend this work to the hierarchical settiitgre a single task hierarchy is
applicable across the entire variable-reward MDP famihe Tierarchical setting provides
advantages over the flat RL case, allowing for selectivestearat multiple levels of the

hierarchy which can significantly speed up learning.

We demonstrate our results in a simplified real-time stsaf®F'S) game domain. In this
domain, peasants accumulate gold and wood resources fidmmgtes and forests respec-
tively, and quell any enemies that appear inside theirtteyti The reward features include
bringing in gold and wood, and damaging the enemy.

The rest of the paper is organized as follows. We provide assis of Variable-Reward RL
(VRRL) in Section 2, followed by an explanation of Hierarchli Reinforcement Learning
(HRL) in Section 3. In Section 4, we elucidate the centrahidéthis paper. We present
experimental results in Section 5, and conclude in Sectiby 6utlining areas of future
work.

2 Variable-Reward Reinforcement Learning

A Semi-Markov Decision Process (SMDRX is a tuple(S, A, P,r,t), whereS is a set of
states A is a set of temporally extended actions, and the transitinotfonP (s'|s, a) gives
the probability of entering staté after taking actior in states. The functions-(s, a) and
(s, a) are the expected reward and execution time respectivelgkimg actiona in state
S.

Given an SMDP, the average rewardgatin p™ of a policy 7 is defined as the ratio of the
expected total reward to the expected total timeNosteps of the policy from any state
as N goes to infinity. In this work, we seek to learn policies thaimize the gain. The
average-adjusted rewardf taking an actioru in states is defined as(s,a) — p”™t(s, a).
The limit of the total expected average-adjusted rewandistefrom states and following
policy 7 as the number of steps goes to infinity is callecdigs and denoted by ™ (s).

In this work, we assume a linear reward functig@, a) = Zf:l w; ri(s, a), where the
r;(s, a) are reward features, and the are reward weights. In this linear reward setting, the

gain and bias are linear in the reward weigiitshat isp™ = - 5™, andh™(s) = w-h™ (s),
where thei components of™ andh™ (s) are the gain and bias respectively with respect to
thei'" reward feature.

We consider transfer learning in the context of families @R% that share all components
except for the reward weights. After encountering a seqaefisuch MDPs, the goal is to
transfer the accumulated experience to speed up learniaghéw MDP given its unique
reward weights. For example, in our RTS domain, we would fikeonsider varying the
reward weighting for bringing in units of wood, gold, and daging the enemy, but still
leverage prior experience.

A previous approach to this problem [4] is based on the fallgyidea. The reward weights
are assumed to be betweemnd1. Since the above value functions are linear in the re-
ward weights, policies can be represented indirectly ag afggarameters of these linear
functions, i.e., the gain and the bias functions are leaiméideir vector forms, where the
components correspond to the expected value of rewardrésawhen the weight is 1.
Thus, the set of optimal policies for different weights fearenconvex and piecewise linear
average reward and bias functions. If a single policy isrogtifor different sets of weights,

it suffices to store one set of parameters representing ttiisyp Furthermore, iC repre-
sents a set of all optimal policies, then given a new weigltorai,es, We might expect

the policy miny = argmax, co{wWhew - p"} to provide a good starting point for learning.
Thus, transfer learning is conducted by initializing thasband gain vectors to those of
minit @and then further optimizing it via average-reward reinfonent learning (ARL). After
convergence, the newly learned bias and gain vectors ayestored inC if the gain of the
new policy with respect tainey improves by more than a satisfaction thresh@ldwith
this approach, if the optimal polices are the same or sirfilamany weight vectors, only
a small number of policies are stored and significant trartsfeld be achieved.

3 Hierarchical Reinforcement Learning

In MAXQ-based Hierarchical Average-Reward Reinforcemiegdirning (HARL) [2, 5],

the original MDP M is split into sub-SMDP{ My, M1, ..., M, }, where each sub-
SMDP represents a subtask. Subtasks that represent thasacofithe original MDP are
called primitive; every other subtask is called compos8elving the composite root task
M, solves the entire MDPM. The task hierarchy is represented as a directed acyclic
graph known as th&ask graphthat represents the subtask relationships. The task bigrar
for the RTS domain is shown in Figure 1(b). The leaf nodestagtimitive subtasks.

Formally, each composite subtask; is defined by the tupléB;, A;, G;):

e State Abstraction B;: A function that selects a subset of the original state vari-
ables to comprise an abstracted state space sufficienitfés value function to
represent the local policy. For example, GéYs(abstracted state space ignores
every state variable but the location of the agent.

e Actions A;: The set of subtasks that can be calledMy. For example, Root can
call either Harvest], Deposit, Attack, or dl e.

e Termination predicate G;: The predicate that partitions the subtask’s abstracted
state space into active and terminated states. Whgns terminated, control
returns back to the calling subtask. The probability of then¢ual termination of
a subtask (other than the root task) is 1. For example, Deisdsirminated if the
peasant is not carrying anything.

A subtask isapplicableiff it is not terminated. The root task’s termination predatie is
always false (an unending subtask). Primitive subtaske hawexplicit termination condi-
tion (they are always applicable), and control returns eoghrent task immediately after
their execution.

A local policy 7; for the subtaskM; is a mapping from the states abstracted hydthe
child tasks ofM;. A hierarchical policyr for the overall task is an assignment of a local
policy ; to each sub-MDRM;. A hierarchically optimal policyis a hierarchical policy
that has the best gain. Unfortunately, hierarchically roptipolicies tend to be context-
sensitive and transfer-resistant in that the best policyhie lower level subtasks depend on
the higher level tasks, e.g., the best way to exit the bugldinght depend on which airport
one wants to drive to. To enable subtask optimization withhegard to the supertasks,
Dietterich introduced the notion a&cursive optimality which optimizes the policy for
each subtask assuming that its children’s policies arerim tecursively optimized [2].
Seri and Tadepalli [5] show that recursive optimality cadies with hierarchical optimality
when the hierarchy satisfies a condition called “resultitligtion invariance” (RDI) which
means that the terminal state distribution of a task doesl@pénd on the policy used to
accomplish it. Often, the tasks in the hierarchy can be design such a way that RDI is
satisfied. In the above example, we might design a hierardthyeach possible exit out
of building as a different subtask so that the correct exéhissen based on the airport one
wants to get to.

4 Variable-Reward Hierarchical Reinforcement L earning
Framework

In the non-hierarchical (flat) setting, every policy is regpented by a monolithic value
function and one gain. This means that even if the rewardsardnge for a small subset
of the states, but the resultant policy belongs in the comeénf optimal policies, the entire
value function will need to be cached. A monolithic valuedtion could also lend itself
to negative transfer where the initial biased value fumctakes longer to converge to the
optimal policy than if it was unbiased to begin with.

We seek to incorporate the transfer mechanism into a htacaicframework to benefit

from value function decomposition. Every subtask has al leaklue function, and local

changes in rewards can be better handled. For instancend abthe reward variations
affect navigation, the Goto subtask need only learn itsllealie function once; perfect
transfer across the MDPs is achievable for this subtaskdansequently everything below
it in the task hierarchy).

In the Variable-Reward HRL framework, every subtasfout the root) stores the total
expected reward vector: during that subtask, and the expected duratjaof the subtask
for every state. The bias vecthr can be calculated by subtracting frdr ¢; times the
global gain vectol. Storing the bias vector indirectly in a form that is indegent of
the gain allows for the transfer of any subtree of the taskaniby across MDPs with
different global gain vectors. Storing the value functi@ssvectors facilitates transfer
across different MDPs in the variable-reward family jusirethe non-hierarchical variable-
reward RL. For action selection, the objective is to maxartize weighted gain (the dot
product of the gain vector with the weight vector).

More formally, the value functio;(s) for a non-root subtask represents the total ex-
pected reward during tagkstarting from state for a recursively optimal policyt. Hence,
the value function decomposition for a non-root subtasisfas the following equations:

—

Vi(s) = (s) if iis a primitive subtask 1)
=0 if sis aterminal/goal state far (2)
)+ > P(s']s,4) - Vi(s') otherwise, (3)
s'eS
wherej = argmax {w - (%(Ba(s)) P B + B [- 6])]
(4)

The primitive subtasks just keep track of the reward reck{eguation 1), and the elapsed
time for the atomic MDP actions they represent. For the cait@tasks, the value of every
terminal state is O (equation 2). The value of a non-ternstetk in a composite task is the
sum of the total reward achievable by the best child taskviaid by the total reward till
the completion of the task (equation 3), where the best ¢thdkl is chosen to maximize the
weighted bias (equation 4). In general, this action chaees to a recursively optimal pol-
icy which coincides with the hierarchically optimal polishen the task hierarchy satisfies
result distribution invariance. Similar Bellman equasaran be written for computing the
total expected time of a subtask, which is a scalar.

Since the root task never terminates, we cannot store thiestqtected reward as we do for
the terminating composite subtasks. Instead, the valugtibmV/.,..(s) for the root task

directly represents the bias of state

‘Zoot(s) = max {U_’" (‘_/'J(BJ(S)) =" {J(B](S)) + Z P(s'[s, j) - ﬁoot(5/)> })

I s'eS

The VRHRL agent has three components: the task hierarclmythgtcurrent subtask value
functions and the global gain, the task stack, and a cacheewfqusly learned optimal
policiesC that comprise the convex piecewise function. Note that tiieips in the cache
are indirectly represented by the subtask value and duratiactions, and the global gain.
The policy cach€ is specific to the hierarchical transfer mechanism whileather com-
ponents are part of a basic hierarchical agent.

Initially, the agent starts out with an empty policy cachéheTagent proceeds to learn a
recursively optimal policyr; for the first weight; . When the agent senses a new weight
W, it first cachesr; (the subtask value functions and the global gain achieved{fpinto

the policy cache. Next, it determineg; = argmax_ {w2-p" } (Whichin this case is1),
and initializes its subtask value functions and global dmised onrjyi;. It then improves
the value functions using vectorized version of model-tdserarchical RL, which works
as follows.

At any level of the task hierarchy, this algorithm choosesxloratory subtask or a greedy
one according to Equation 4. It learns the transition mael|s, a) for each subtask by
counting the number of resulting states for each stategaiskand estimating the transition
probabilities. In doing so, the states are abstracted ubimgbstraction function defined
at that subtask so that the transition probabilities areessmted compactly. Every time
a child task terminates, Equations 2 and 3 are used to updatmtal expected reward
vector V; of taski, and similar equations are used to update the durationiimet(s)

(a scalar). The global average-reward veetblis updated at the root level by averaging
the immediate reward adjusted by the difference in the béasovs of the two end states.
Additionally, the average-time scaléf is updated by averaging the immediate duration of
the root task’s subtasks.

7 (1= a)F" + a(Va(s) + Vioot(s') = Vioot(s)) (6)
" — (1 —a)t™ + atq(s) (7)

where« is the learning rate, and and s’ are the states before and after executing the
highest level subtask of the root task. The updates in equations 6 and 7 are pertbrme
only a is selected greedily. Finallyj™ < 77/ ¢™. « is decayed down to an asymptotic
value of 0 during the course of the learning algorithm.

On sensing a new weighis, the agent only caches the learned hierarchical palicfor
Wy if Wy - p72 — Wy - p™t > §. If this condition is not satisfied, then the newly learned
policy is not sufficiently better than the cached versionwieer, if it is satisfied, then the
newly learned policy must be added to the cache. When addirtg the policy cache,
we could just store the value function of every subtask int#sk hierarchy. However,
although the hierarchical policy has changed, many of thal lsubtask policies could still
be the same. To leverage this fact, for every subtask beangdstwe check the policy cache
to see if any of the previously stored versions of the subigsknilar to the current one;
if so, then we need only store a reference to that previoushed version. Two versions
of a subtask are similar if none of the values for the vectonponents of the value and
duration functions for any state differ by more tham similarity constant. Once caching is
complete, the policy that maximizes the weighted gain wifstis chosen from the policy
cache for initialization. This process is repeated for gvew weight encountered by the
system. Thus, every weight change is accompanied by thealterocess of caching and
initialization for the agent.

5 Experimental Results

i $-(a)
2 La | Harvesi(i) | |Deposit| [idie] JAttack]
[>\ l
rek] (] Joua]
2 /
] (SN [north| [south| [east] [west]
@) ()

Figure 1: Simplified RTS domain and the corresponding taskanchy.

For our experiments, we consider a simplified RTS game showFigure 1(a). Itis a
grid world that contains peasants, the peasants’ home tessrirce locations (forests and
goldmines) where the peasants can harvest wood or gold re@deany base which can be
attacked. The state variables in this domain are the péasacution, what it is currently
carrying (gold or wood or nothing), and the resources alkilat each of the resource
locations. The primitive actions available to a peasantaweing one cell to theort h,
sout h, east, andwest , pi ck a resourceput a resourceat t ack the enemy base,
andi dl e (no-op). In this domain, the resources get regeneratedhastically and are
inexhaustible. The enemy also appears stochastically tagd antil there is a peasant in
the same cell that is attacking it.

The basic reward setup is as follows1 for every action+100 and+200 for depositing
wood and gold at the home base respectively, #8600 for damaging the enemy. Each
of the weight components; € [0, 1); they dictate the relative value of collecting the
various resources and attacking the enemy. For examplbgipeasant is at its home
base with a load of gold (statg) and is executing theut action, the reward vector
7(s1,put) = (—1,0,200,0). If the weightw = (0,0.5,0.2,0.9), then the scalar reward
= - 7(s1, put) = 40.

The following results are based on a single-peasant gameinxa25 grid with 3 forests
cells, 2 goldmines, a home base, and an enemy base. Figaear{ 2(b) show the
learning curves for both the flat and VRHRL learners for orst teeight (0.5 for every
component) after having seen 0 through 10 previous trainieights, averaged over 10
different weight sets. All training weight vectors are gexted by drawing every weight
component from a Uniform(0,1) distribution.

Both the flat and hierarchical learners use epsilon-greggiomtion. For both learners,
the learning curve for the test weight given no training wasgi.e., an empty policy cache)
is slow. However, after learning on one training weight, HRHRL agent converges very
quickly for the test weight. This could be attributed to indize and perfect transfer of
composite subtasks such as Goto. The flat learner exhilgtgiae transfer, i.e., the initial-
ization to the policy for the training weight is hurting therwergence for the test weight.
This is unsurprising given that currently we always attetaptansfer past experience, even
when experience is limited. VRHRL seems to avoid such negatansfer by clustering
experience into similar subtasks. Obviously, as both kEr@rsee more training weights,
their performance improves.

Since the MDPs have the same dynamics, the learners do rbtmeslearn the transition

models from scratch when the reward weights change. Tordaterhow much of the
transfer benefits can be attributed to the transition mod&édgires 3(a) and 3(b) show the
results of repeating the above experimental setup with omgat difference — no policy is
ever cached. Thus, the only transfer here is due to the timmgaiodels. Obviously, reusing
the learned transition models is helpful to both agents. ¢l@y the VRHRL learner does
perform better with the added mechanism of caching. On therdtand, the flat learner
does slightly worse with caching due to negative transfer.

As another measure of transfer, [E{- be the area between the learning curve and its
optimal value for problenY” with no prior learning experience oNf, and Fy | x be the
area between the learning curve and its optimal value fdolproY” given prior training
on X. Thetransfer ratiois defined asy /Fy|x. When evaluating this metric, the base
experimental setup is the same as above except that nowsthwedgght vector for every
set is generated randomly just like the training vectors, e transfer ratio is averaged
over these 10 sets. The test vectors need not be the sametfesdase of plotting the
learning curves) because the transfer ratio is a metricishadependent of the absolute
convergence value of the learning curves. Figure 4 showsahsfer ratios for the flat and
VRHRL learners, with and without caching. It is apparent the VRHRL has benefited
the most from the transfer of subtask value functions.

08|z

0.6

Average Reward
Average Reward

0.4

0.2

=

05 0
0e+0 5e+5 le+6 2e+6 2e+6 3e+6 3e+6 0e+0 5e+5 1le+6 2e+6 2e+6 3e+6 3e+6
Time Step Time Step

(a) VRHRL learner. (b) Flat learner.

Figure 2: Learning curves with policy caching.

Average Reward
Average Reward

- 0
0e+0 Se+5 le+6 2e+6 2e+6 3e+6 3e+6 0Oe+0 5e+5 le+6 2e+6 2e+6 3e+6 3e+6
Time Step Time Step

(a) VRHRL learner. (b) Flat learner.

Figure 3: Learning curves without policy caching.

Transfer ratio

Training weights

Figure 4: Transfer ratios.

6 Conclusionsand Future Work

In this paper, we showed that hierarchical reinforcemeartni@g can accelerate transfer
across variable-reward MDPs more so than in the non-hieiGaiccase. Our results are
in the model-based setting with the advantage that the raasad not be relearned when
the rewards change. While we assumed that the reward weighigiven, it is easy to
learn them from the scalar rewards since the scalar rewdirtker in the reward weights.
Extending these results to MDP families with slightly difat dynamics would be inter-
esting. Another possible direction is an extension to shardtasks in the multi-agent
setting [3].

Acknowledgments

We thank the reviewers for their helpful comments and sugges The idea of using
transfer ratio to evaluate the effectiveness of transfigimated in discussions with Stuart
Russell and Leslie Kaelbling. We gratefully acknowledgeshpport of Defense Advanced
Research Projects Agency under DARPA grant FA8750-05480%iews and conclusions
contained in this document are those of the authors and doaugtssarily represent the
official opinion or polices, either expressed or impliedthaf US government or of DARPA.

References
[1] P. Abbeel and A. Ng. Apprenticeship Learning via InveRsinforcement Learning.
In Proceedings of the ICML2004.

[2] T. Dietterich. Hierarchical Reinforcement Learningtivthe MAXQ Value Function
DecompositionJournal of Artificial Intelligence Research:227-303, 2000.

[3] N. Mehta and P. Tadepalli. Multi-Agent Shared HierardRginforcement Learning.
ICML Workshop on Rich Representations in Reinforcementniireg 2005.

[4] S. Natarajan and P. Tadepalli. Dynamic Preferences iftiMuiteria Reinforcement
Learning. InProceedings of the ICML2005.

[5] S. Seri and P. Tadepalli. Model-based Hierarchical Ager Reward Reinforcement
Learning. InProceedings of the ICMLpages 562-569, 2002.

