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Abstract

We consider the problem of transferring learned knowledge among
Markov Decision Processes that share the same transition dynamics but
different reward functions. In particular, we assume that reward functions
are described as linear combinations of reward features, and that only the
feature weights vary among MDPs. We introduce Variable-Reward Hi-
erarchical Reinforcement Learning (VRHRL), which leverages a cache
of learned policies to speed up learning in this setting. With suitable de-
sign of the task hierarchy, VRHRL can achieve better transfer than its
non-hierarchical counterpart.

1 Introduction

Most work in Reinforcement Learning (RL) addresses the problem of solving a single
Markov Decision Process (MDP) defined principally by its dynamics (a transition func-
tion) and a reward function. The focus on solving individualMDPs makes it difficult, if
not impossible, to learn cumulatively, i.e., to transfer useful knowledge from one MDP to
another. In this paper, we considervariable-reward transfer learningwhere the objective
is to speed up learning in a new MDP by transferring experience from previous MDPs that
share the same dynamics but different reward functions. In particular, we assume that re-
ward functions are weighted linear combinations of reward features, and that thereward
weightsvary across MDPs.

MDPs that share the same dynamics but have different reward structures arise in many
contexts. For example, different agents operating in a domain such as driving might have
different preference functions although they are all constrained by the same physics [1].
Even when the reward function can be defined objectively, e.g., winning as many games as
possible in chess, usually the experimenter needs to provide other “shaping rewards”, such
as the value of winning a pawn, to encourage Reinforcement Learning (RL) systems to do
useful exploration. Each such shaping reward function can be viewed as defining a different
MDP in the same family. Reward functions can also be seen as goal specifications for
agents such as robots and Internet search engines. Alternatively, different reward functions
may arise externally based on difficult-to-predict changesin the world, e.g., raising gas
prices or declining interest rates that warrant lifestyle changes.



For such variable-reward MDPs, previous work [4] has shown how to leverage the reward
structure in order to usefully transfer value functions, effectively speeding-up learning. In
this paper, we extend this work to the hierarchical setting,where a single task hierarchy is
applicable across the entire variable-reward MDP family. The hierarchical setting provides
advantages over the flat RL case, allowing for selective transfer at multiple levels of the
hierarchy which can significantly speed up learning.

We demonstrate our results in a simplified real-time strategy (RTS) game domain. In this
domain, peasants accumulate gold and wood resources from gold mines and forests respec-
tively, and quell any enemies that appear inside their territory. The reward features include
bringing in gold and wood, and damaging the enemy.

The rest of the paper is organized as follows. We provide a synopsis of Variable-Reward RL
(VRRL) in Section 2, followed by an explanation of Hierarchical Reinforcement Learning
(HRL) in Section 3. In Section 4, we elucidate the central idea of this paper. We present
experimental results in Section 5, and conclude in Section 6by outlining areas of future
work.

2 Variable-Reward Reinforcement Learning

A Semi-Markov Decision Process (SMDP)M is a tuple(S,A, P, r, t), whereS is a set of
states,A is a set of temporally extended actions, and the transition functionP(s′|s, a) gives
the probability of entering states′ after taking actiona in states. The functionsr(s, a) and
t(s, a) are the expected reward and execution time respectively fortaking actiona in state
s.

Given an SMDP, the average reward orgain ρπ of a policyπ is defined as the ratio of the
expected total reward to the expected total time forN steps of the policy from any states
asN goes to infinity. In this work, we seek to learn policies that maximize the gain. The
average-adjusted rewardof taking an actiona in states is defined asr(s, a) − ρπt(s, a).
The limit of the total expected average-adjusted reward starting from states and following
policy π as the number of steps goes to infinity is called itsbiasand denoted byhπ(s).

In this work, we assume a linear reward functionr(s, a) =
∑k

i=1
wi ri(s, a), where the

ri(s, a) are reward features, and thewi are reward weights. In this linear reward setting, the
gain and bias are linear in the reward weights~w, that isρπ = ~w ·~ρπ, andhπ(s) = ~w ·~hπ(s),
where thei components of~ρπ and~hπ(s) are the gain and bias respectively with respect to
theith reward feature.

We consider transfer learning in the context of families of MDPs that share all components
except for the reward weights. After encountering a sequence of such MDPs, the goal is to
transfer the accumulated experience to speed up learning ina new MDP given its unique
reward weights. For example, in our RTS domain, we would liketo consider varying the
reward weighting for bringing in units of wood, gold, and damaging the enemy, but still
leverage prior experience.

A previous approach to this problem [4] is based on the following idea. The reward weights
are assumed to be between0 and1. Since the above value functions are linear in the re-
ward weights, policies can be represented indirectly as a set of parameters of these linear
functions, i.e., the gain and the bias functions are learnedin their vector forms, where the
components correspond to the expected value of reward features when the weight is 1.
Thus, the set of optimal policies for different weights forms a convex and piecewise linear
average reward and bias functions. If a single policy is optimal for different sets of weights,
it suffices to store one set of parameters representing this policy. Furthermore, ifC repre-
sents a set of all optimal policies, then given a new weight vector ~wnew, we might expect



the policyπinit = argmaxπ∈C{~wnew · ~ρ
π} to provide a good starting point for learning.

Thus, transfer learning is conducted by initializing the bias and gain vectors to those of
πinit and then further optimizing it via average-reward reinforcement learning (ARL). After
convergence, the newly learned bias and gain vectors are only stored inC if the gain of the
new policy with respect to~wnew improves by more than a satisfaction thresholdδ. With
this approach, if the optimal polices are the same or similarfor many weight vectors, only
a small number of policies are stored and significant transfer could be achieved.

3 Hierarchical Reinforcement Learning

In MAXQ-based Hierarchical Average-Reward ReinforcementLearning (HARL) [2, 5],
the original MDPM is split into sub-SMDPs{M0,M1, . . . ,Mn}, where each sub-
SMDP represents a subtask. Subtasks that represent the actions of the original MDP are
called primitive; every other subtask is called composite.Solving the composite root task
M0 solves the entire MDPM. The task hierarchy is represented as a directed acyclic
graph known as thetask graphthat represents the subtask relationships. The task hierarchy
for the RTS domain is shown in Figure 1(b). The leaf nodes are the primitive subtasks.

Formally, each composite subtaskMi is defined by the tuple(Bi,Ai, Gi):

• State Abstraction Bi: A function that selects a subset of the original state vari-
ables to comprise an abstracted state space sufficient forMi’s value function to
represent the local policy. For example, Goto(l)’s abstracted state space ignores
every state variable but the location of the agent.

• ActionsAi: The set of subtasks that can be called byMi. For example, Root can
call either Harvest(l), Deposit, Attack, oridle.

• Termination predicate Gi: The predicate that partitions the subtask’s abstracted
state space into active and terminated states. WhenMi is terminated, control
returns back to the calling subtask. The probability of the eventual termination of
a subtask (other than the root task) is 1. For example, Deposit is terminated if the
peasant is not carrying anything.

A subtask isapplicable iff it is not terminated. The root task’s termination predicate is
always false (an unending subtask). Primitive subtasks have no explicit termination condi-
tion (they are always applicable), and control returns to the parent task immediately after
their execution.

A local policy πi for the subtaskMi is a mapping from the states abstracted by Bi to the
child tasks ofMi. A hierarchical policyπ for the overall task is an assignment of a local
policy πi to each sub-MDPMi. A hierarchically optimal policyis a hierarchical policy
that has the best gain. Unfortunately, hierarchically optimal policies tend to be context-
sensitive and transfer-resistant in that the best policy for the lower level subtasks depend on
the higher level tasks, e.g., the best way to exit the building might depend on which airport
one wants to drive to. To enable subtask optimization without regard to the supertasks,
Dietterich introduced the notion ofrecursive optimality, which optimizes the policy for
each subtask assuming that its children’s policies are in turn recursively optimized [2].
Seri and Tadepalli [5] show that recursive optimality coincides with hierarchical optimality
when the hierarchy satisfies a condition called “result distribution invariance” (RDI) which
means that the terminal state distribution of a task does notdepend on the policy used to
accomplish it. Often, the tasks in the hierarchy can be designed in such a way that RDI is
satisfied. In the above example, we might design a hierarchy with each possible exit out
of building as a different subtask so that the correct exit ischosen based on the airport one
wants to get to.



4 Variable-Reward Hierarchical Reinforcement Learning
Framework

In the non-hierarchical (flat) setting, every policy is represented by a monolithic value
function and one gain. This means that even if the rewards only change for a small subset
of the states, but the resultant policy belongs in the convexset of optimal policies, the entire
value function will need to be cached. A monolithic value function could also lend itself
to negative transfer where the initial biased value function takes longer to converge to the
optimal policy than if it was unbiased to begin with.

We seek to incorporate the transfer mechanism into a hierarchical framework to benefit
from value function decomposition. Every subtask has a local value function, and local
changes in rewards can be better handled. For instance, if none of the reward variations
affect navigation, the Goto subtask need only learn its local value function once; perfect
transfer across the MDPs is achievable for this subtask (andconsequently everything below
it in the task hierarchy).

In the Variable-Reward HRL framework, every subtaski (but the root) stores the total
expected reward vector~Vi during that subtask, and the expected durationti of the subtask
for every state. The bias vector~hi can be calculated by subtracting from~Vi, ti times the
global gain vector~ρ. Storing the bias vector indirectly in a form that is independent of
the gain allows for the transfer of any subtree of the task hierarchy across MDPs with
different global gain vectors. Storing the value functionsas vectors facilitates transfer
across different MDPs in the variable-reward family just asin the non-hierarchical variable-
reward RL. For action selection, the objective is to maximize the weighted gain (the dot
product of the gain vector with the weight vector).

More formally, the value function~Vi(s) for a non-root subtaski represents the total ex-
pected reward during taski starting from states for a recursively optimal policyπ. Hence,
the value function decomposition for a non-root subtask satisfies the following equations:

~Vi(s) = ~r(s) if i is a primitive subtask (1)

= 0 if s is a terminal/goal state fori (2)

= ~Vj(Bj(s)) +
∑

s′∈S

P(s′|s, j) · ~Vi(s
′) otherwise, (3)

wherej = argmax
a

{

~w ·

(

~Va(Ba(s))− ~ρπ · ta(Ba(s)) + E
[

~Vi(s
′)− ~ρπ · ti(s

′)
]

)}

(4)

The primitive subtasks just keep track of the reward received (equation 1), and the elapsed
time for the atomic MDP actions they represent. For the composite tasks, the value of every
terminal state is 0 (equation 2). The value of a non-terminalstate in a composite task is the
sum of the total reward achievable by the best child task followed by the total reward till
the completion of the task (equation 3), where the best childtask is chosen to maximize the
weighted bias (equation 4). In general, this action choice leads to a recursively optimal pol-
icy which coincides with the hierarchically optimal policywhen the task hierarchy satisfies
result distribution invariance. Similar Bellman equations can be written for computing the
total expected time of a subtask, which is a scalar.

Since the root task never terminates, we cannot store the total expected reward as we do for
the terminating composite subtasks. Instead, the value function ~Vroot(s) for the root task



directly represents the bias of states:

~Vroot(s) = max
j

{

~w ·

(

~Vj(Bj(s))− ~ρπ · ~tj(Bj(s)) +
∑

s′∈S

P(s′|s, j) · ~Vroot(s
′)

)

}

(5)

The VRHRL agent has three components: the task hierarchy with the current subtask value
functions and the global gain, the task stack, and a cache of previously learned optimal
policiesC that comprise the convex piecewise function. Note that the policies in the cache
are indirectly represented by the subtask value and duration functions, and the global gain.
The policy cacheC is specific to the hierarchical transfer mechanism while theother com-
ponents are part of a basic hierarchical agent.

Initially, the agent starts out with an empty policy cache. The agent proceeds to learn a
recursively optimal policyπ1 for the first weight~w1. When the agent senses a new weight
~w2, it first cachesπ1 (the subtask value functions and the global gain achieved for ~w1) into
the policy cache. Next, it determinesπinit = argmaxπ∈C{~w2 ·~ρ

π} (which in this case isπ1),
and initializes its subtask value functions and global gainbased onπinit . It then improves
the value functions using vectorized version of model-based hierarchical RL, which works
as follows.

At any level of the task hierarchy, this algorithm chooses anexploratory subtask or a greedy
one according to Equation 4. It learns the transition modelP(s′|s, a) for each subtask by
counting the number of resulting states for each state-taskpair and estimating the transition
probabilities. In doing so, the states are abstracted usingthe abstraction function defined
at that subtask so that the transition probabilities are represented compactly. Every time
a child task terminates, Equations 2 and 3 are used to update the total expected reward
vector ~Vi of task i, and similar equations are used to update the duration function ti(s)
(a scalar). The global average-reward vectorr̄π is updated at the root level by averaging
the immediate reward adjusted by the difference in the bias vectors of the two end states.
Additionally, the average-time scalart̄π is updated by averaging the immediate duration of
the root task’s subtasks.

r̄π ← (1− α)r̄π + α(~Va(s) + ~Vroot(s
′)− ~Vroot(s)) (6)

t̄π ← (1− α)t̄π + α ta(s) (7)

whereα is the learning rate, ands and s′ are the states before and after executing the
highest level subtaska of the root task. The updates in equations 6 and 7 are performed
only a is selected greedily. Finally,~ρπ ← r̄π/ t̄π. α is decayed down to an asymptotic
value of 0 during the course of the learning algorithm.

On sensing a new weight~w3, the agent only caches the learned hierarchical policyπ2 for
~w2 if ~w2 · ~ρ

π2 − ~w2 · ~ρ
πinit > δ. If this condition is not satisfied, then the newly learned

policy is not sufficiently better than the cached version. However, if it is satisfied, then the
newly learned policy must be added to the cache. When addingπ2 to the policy cache,
we could just store the value function of every subtask in thetask hierarchy. However,
although the hierarchical policy has changed, many of the local subtask policies could still
be the same. To leverage this fact, for every subtask being stored, we check the policy cache
to see if any of the previously stored versions of the subtaskis similar to the current one;
if so, then we need only store a reference to that previously stored version. Two versions
of a subtask are similar if none of the values for the vector components of the value and
duration functions for any state differ by more thanε, a similarity constant. Once caching is
complete, the policy that maximizes the weighted gain w.r.t. ~w3 is chosen from the policy
cache for initialization. This process is repeated for every new weight encountered by the
system. Thus, every weight change is accompanied by the internal process of caching and
initialization for the agent.



5 Experimental Results

(a)

Root

Harvest(l) Deposit Attack

Goto(k)pick put

north south east west

attack

idle

(b)

Figure 1: Simplified RTS domain and the corresponding task hierarchy.

For our experiments, we consider a simplified RTS game shown in Figure 1(a). It is a
grid world that contains peasants, the peasants’ home base,resource locations (forests and
goldmines) where the peasants can harvest wood or gold, and an enemy base which can be
attacked. The state variables in this domain are the peasant’s location, what it is currently
carrying (gold or wood or nothing), and the resources available at each of the resource
locations. The primitive actions available to a peasant aremoving one cell to thenorth,
south, east, andwest, pick a resource,put a resource,attack the enemy base,
andidle (no-op). In this domain, the resources get regenerated stochastically and are
inexhaustible. The enemy also appears stochastically and stays until there is a peasant in
the same cell that is attacking it.

The basic reward setup is as follows:−1 for every action,+100 and+200 for depositing
wood and gold at the home base respectively, and+300 for damaging the enemy. Each
of the weight componentswi ∈ [0, 1); they dictate the relative value of collecting the
various resources and attacking the enemy. For example, if the peasant is at its home
base with a load of gold (states1) and is executing theput action, the reward vector
~r(s1,put) = (−1, 0, 200, 0). If the weight ~w = (0, 0.5, 0.2, 0.9), then the scalar reward
= ~w · ~r(s1,put) = 40.

The following results are based on a single-peasant game in a25 × 25 grid with 3 forests
cells, 2 goldmines, a home base, and an enemy base. Figures 2(a) and 2(b) show the
learning curves for both the flat and VRHRL learners for one test weight (0.5 for every
component) after having seen 0 through 10 previous trainingweights, averaged over 10
different weight sets. All training weight vectors are generated by drawing every weight
component from a Uniform(0,1) distribution.

Both the flat and hierarchical learners use epsilon-greedy exploration. For both learners,
the learning curve for the test weight given no training weights (i.e., an empty policy cache)
is slow. However, after learning on one training weight, theVRHRL agent converges very
quickly for the test weight. This could be attributed to immediate and perfect transfer of
composite subtasks such as Goto. The flat learner exhibits negative transfer, i.e., the initial-
ization to the policy for the training weight is hurting the convergence for the test weight.
This is unsurprising given that currently we always attemptto transfer past experience, even
when experience is limited. VRHRL seems to avoid such negative transfer by clustering
experience into similar subtasks. Obviously, as both learners see more training weights,
their performance improves.

Since the MDPs have the same dynamics, the learners do not need to relearn the transition



models from scratch when the reward weights change. To determine how much of the
transfer benefits can be attributed to the transition models, Figures 3(a) and 3(b) show the
results of repeating the above experimental setup with one crucial difference – no policy is
ever cached. Thus, the only transfer here is due to the transition models. Obviously, reusing
the learned transition models is helpful to both agents. However, the VRHRL learner does
perform better with the added mechanism of caching. On the other hand, the flat learner
does slightly worse with caching due to negative transfer.

As another measure of transfer, letFY be the area between the learning curve and its
optimal value for problemY with no prior learning experience onX, andFY |X be the
area between the learning curve and its optimal value for problemY given prior training
on X. The transfer ratio is defined asFY /FY |X . When evaluating this metric, the base
experimental setup is the same as above except that now the test weight vector for every
set is generated randomly just like the training vectors, and the transfer ratio is averaged
over these 10 sets. The test vectors need not be the same (as inthe case of plotting the
learning curves) because the transfer ratio is a metric thatis independent of the absolute
convergence value of the learning curves. Figure 4 shows thetransfer ratios for the flat and
VRHRL learners, with and without caching. It is apparent that the VRHRL has benefited
the most from the transfer of subtask value functions.
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(b) Flat learner.

Figure 2: Learning curves with policy caching.

-0.5

 0

 0.5

 1

 1.5

 2

0e+0 5e+5 1e+6 2e+6 2e+6 3e+6 3e+6

A
ve

ra
ge

 R
ew

ar
d

Time Step

0
1
2
3
4
5
6
7
8
9

10

(a) VRHRL learner.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0e+0 5e+5 1e+6 2e+6 2e+6 3e+6 3e+6

A
ve

ra
ge

 R
ew

ar
d

Time Step

0
1
2
3
4
5
6
7
8
9

10

(b) Flat learner.

Figure 3: Learning curves without policy caching.
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6 Conclusions and Future Work

In this paper, we showed that hierarchical reinforcement learning can accelerate transfer
across variable-reward MDPs more so than in the non-hierarchical case. Our results are
in the model-based setting with the advantage that the models need not be relearned when
the rewards change. While we assumed that the reward weights are given, it is easy to
learn them from the scalar rewards since the scalar reward islinear in the reward weights.
Extending these results to MDP families with slightly different dynamics would be inter-
esting. Another possible direction is an extension to shared subtasks in the multi-agent
setting [3].
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