
Towards Life-Long Meta Learning

Matteo Gagliolo † Jürgen Schmidhuber†‡
†IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland

‡TU Munich, Boltzmannstr. 3, 85748 Garching, München, German
{matteo,juergen}@idsia.ch

Abstract

We reformulate algorithm selection as atime allocationproblem: all
candidate algorithms are run in parallel, and their relative priorities are
continually updated based on its current time to solution, estimated ac-
cording to a parametric model that is trainedand used while solving a
sequence of problems.

1 Motivation

Meta-Learning techniques typically require a long training phase, during which a large
number of problems is repeatedly solved with each of the available algorithms, in order to
learn a mapping from (problem,algorithm) pairs to expected performance, to be used for
algorithm selection. This approach poses a number of problems. It presumes that such
a mapping can be learned at all, i.e. that the actual performance of an algorithm on a
given problem will be predictable with enough precision before even starting it. It also
assumes problem instances met during the training phase to be statistically representative
of successive ones. For these reasons, there usually is no way to detect a relevant discrep-
ancy between expected and actual performance of the chosen algorithm. It also neglects
computational complexity issues: ranking between algorithms is often based solely on the
expectedquality of the performance, and the time spent during the training phase is not
even considered. TheAlgorithm Portfolioparadigm [1] consists in selecting asubsetof
the available algorithms, to be run in parallel, with the same priority, until the fastest one
solves the problem. This simple scheme is more robust, as it’s less likely that performance
estimates will be wrong for all selected algorithms, but it requires the same expensive train-
ing procedure, and also involves an additional overhead, due to the “brute force” parallel
execution of all candidate solvers.

In our view, a crucial weakness of these approaches is that they don’t exploit any feedback
from the actual execution of the algorithms. We try to move a step in this direction, intro-
ducingDynamic Algorithm Portfolios. Instead offirst choosing a portfoliothenrunning it,
we iterativelyallocatea time slice, sharing it among all the available algorithms,andup-
date the relative prioritiesof the algorithms, based on their current state, in order to favor
the most promising ones. Instead of basing the priority attribution on performance quality,
we fix a target performance, and try to minimize the time to reach it. To this aim, we search
for a mapping from (problem,algorithm,current algorithm state) triples toexpected time
to reach the desired performance quality. To further reducecomputational complexity, we
focus onlifelong-learningtechniques that drop the artificial boundary between training and



usage, exploiting the mapping during training, and including training time in performance
evaluation. In [2, 3] we termed this approachAdaptive Online Time Allocation(AOTA).

2 Previous work

A number of interesting “dynamic” exceptions to the otherwise static algorithm selection
paradigm can be met in literature (see the techrep version of[2] for a more exhaustive
bibliography). In [4], algorithm recommendation is based on the performance of the can-
didate algorithms during a predefined amount of time, calledthe observational horizon.
In anytime algorithm monitoring[5], thedynamic performance profileof a planning tech-
nique is updated according to its performance, in order to stop the planning phase when
further improvements in the actions planned are not worth the time spent in evaluating
them. The “Parameterless GA” [6] is a fixed heuristic time allocation technique for Genetic
Algorithms. In a Reinforcement Learning setting, algorithm selection can be formulated
as a Markov Decision Process: in [7], the algorithm set includes sequences of recursive
algorithms, formed dynamically at run-time solving a sequential decision problem, and a
variation of Q-learning is used to find an online algorithm selection policy; in [8], a set
of deterministic algorithms is considered, and, under somelimitations, static and dynamic
algorithm selection techniques based on dynamic programming are presented.

3 AOTA framework

Consider asequenceB of m problem instancesb1, b2, . . . , bm, roughly sorted in increasing
order of difficulty, and featuring precise stopping criteria (e.g. search problems in which
the solution is known to exist and can be recognized; optimization problems in which a
reachable target value for performance is given); and a setA of n algorithmsa1, a2, . . . , an,
that can be applied to the solution of the problems inB, paused and resumed at any time,
and queried, at a negligible cost, for state informationd ∈

�
d related to their progress in

solving the current instance. We aim at minimizing the time to solve the whole problem
sequenceB. To describe the state of a Dynamic Algorithm Portfolio (DAP), let ti be the
time already spent onai, τi the currentestimateof the time still needed byai to solve
the current problem,xi a feature vector, possibly including information about thecurrent
problem instance, the algorithmai itself (e.g. its kind, the values of its parameters), and its
current statedi; Hi = {(x

(r)
i , t

(r)
i ), r = 0, . . . , hi} a set of collected samples of these pairs,

fτ a model that maps historiesHi to estimatedτi. If the modelfτ was precise enough, we
would not need to run more than one algorithm, theai that is mapped to a lowerτ before
its start (ti = 0): it is instead more realistic to assume that the model’s estimates are rough,
but can be improved by collecting more data inHi, i.e. by getting more run-time feedback
on the actual performance ofai on current problem instance. We then introduce a set of
nonnegative scalarsPA = {p1, .., pn}, pi ≥ 0,

∑n

i=1 pi = 1, that represent the current
biasof the portfolio, slice machine time with a small interval∆t, and iteratively share each
time slice between the algorithms proportionally to the current bias; before each iteration,
the bias is updated according to a functionfP of {τi}, that obviously gives more time to
expected fasterai (i.e. the ones with a lowτi); after a sharepi∆t has expired,τi is updated
based on currentHi (Fig. 3). In intra-problemAOTA, the predictive modelfτ is fixed; in
inter-problemAOTA, fτ itself is adaptive, and gets updated after each problem’s solution.

For fP , one reasonable heuristic, that gave good results, consists in assigning1/2 of the
current time slice to the expected fastest algorithm (i.e. the one with lowestτi), 1/4 to
the second fastest, and so on. This heuristic cannot be directly applied to inter-problem
AOTA, though, as the model would obviously be unreliable during the first problems of
the sequence. In this case it is better to start the problem sequence with a “brute force”fP

(pi = 1/n), and vary it gradually towards the above described “ranking” fP .



Figure 1: A pseudocode for inter-problem AOTA

For each problem bk

initialize {τi}
While (bk not solved)

update PA = fP ({τi})
For each algorithm ai

run ai for pi∆t
update Hi = Hi ∪ (xi, ti)
update τi = fτ (Hi)

End
End
update fτ based on {Hi}

End

4 Example AOTAs and experiments

In [2] we presented a fixed heuristicfτ . We considered algorithms with a scalar statex, that
had to reach a target value:Hi in this case is a simplelearning curve. Through a shifting
window linear regression, we extrapolated for eachi the timeti,sol at which the current
learning curveHi would reach the target value, in order to estimate the time tosolution
τi = ti,sol − ti. Even though the estimates were obviously optimistic, theywere updated
so often that the overall performance of the intra-problem AOTA was remarkably good;
its obvious limitations were that it required some prior knowledge about the algorithms,
and a simple relationship between the learning curve and thetime to solution. What if we
instead want tolearn a potentially complex mappingfτ from scratch? For a successful
algorithmai that solved the problem at timet(hi)

i , we cana posteriorievaluate the correct

τ
(r)
i = t

(hi)
i − t

(r)
i for each pair(x(r)

i , t
(r)
i ) in Hi. In a first tentative experiment, that led

to poor results, these values were used as targets to learn a regression from pairs(x, t) to
residual time valuesτ . The main problem with this approach is whichτ values to choose
as targets for theunsuccessfulalgorithms. The alternative we presented in [3] is inspiredby
censored samplingfor lifetime distribution estimation, and consists in learning a parametric
modelg(τ |x;w) of the conditional probability density function (pdf) of the residual time
τ . One advantage of this approach is that it fully exploits thestate history information
gathered, as it allows to learn from the unsuccessful algorithms as well. The model was
obtained by training a neural network to mapx values to the two parameters of an Extreme
Value distribution of the time to solution, on data collected while solving a sequenceB
of 21 deceptive problems, with a setA of 76 different Genetic Algorithms. In Fig. 2 we
compare the NN model (NN-AOTA) from [3] with a simpler one, a quadratic expansions of
x of the formw0 +

∑
i wixi +

∑
i,j wi,jxixj (L2-AOTA). The average ratio between the

time spent by the whole portfolio and the (usually differentat each run and on each task)
best element in the set was about11 for the fixedfτ and8 for the adaptivefτ AOTA. This
latter would be e.g. the performance of analready trained“static” Algorithm Portfolio that
picked, for each problem,8 of the 76 algorithms, always including the fastest: to fairly
compare with such a technique, though, we should also consider its additional training
time.

We advocate the use of Dynamic Algorithm Portfolios with sets of computationally expen-
sive algorithms. For faster ones, a more refined approach should also take into account the
cost of updating the model. The modelfτ was trained on all historic data gathered so far,
in a “batch learning” approach: for longer problem sequences, an online method would
obviously be preferable, in order to obtain a scalablelife-long meta learning technique. In
future work we plan to address these and other limitations; ongoing experiments focus on



2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Task sequence, from 1 to 21

C
um

ul
at

iv
e 

tim
e 

(f
itn

es
s 

fu
nc

. e
va

ls
)

BEST
L2−AOTA (adaptive fτ )

NN−AOTA (adaptive fτ )

AOTA
ra

 (fixed fτ )

BRUTE

Figure 2: The cumulative time spent on the sequence of tasks by the adaptivefτ method, with a
neural network (NN-AOTA) and a quadratic model (L2-AOTA), compared with the fixedfτ from [2]
this time with rankingfP (AOTAra). Also shown are the the performances of the (usually different
at each run and on each task) fastest solver of the set, (BEST), whichwould be the performance of
an ideal algorithm selection with “foresight” of the correctτi values atti = 0; and the estimated
performance of a brute force approach (BRUTE), i.e. running all the algorithms in parallel until one
solves the problem, which leaves the figure and completes the task sequence at time3.3× 107. Time
is measured in fitness function evaluations, values shown are upper95% confidence limits calculated
on20 runs.

alternative parametric models, and different algorithm set/problem sequence combinations.

References

[1] C. P. Gomes and B. Selman. Algorithm portfolios.Artificial Intelligence, 126(1–2):43–
62, 2001.

[2] M. Gagliolo, V. Zhumatiy, and J. Schmidhuber. Adaptive online time alloca-
tion to search algorithms. In J. F. Boulicaut et al., editor,Machine Learn-
ing: ECML 2004., pages 134–143. Springer, 2004. — Extended techrep
http://www.idsia.ch/idsiareport/IDSIA-23-04.ps.gz.

[3] M. Gagliolo and J. Schmidhuber. A neural network model for inter-problem adaptive
online time allocation. In W. Duch et al., editor,ICANN 2005, Proceedings, Part 2,
pages 7–12, 2005.

[4] E. Horvitz, Y. Ruan, C. P. Gomes, H. A. Kautz, B. Selman, and D. Maxwell Chickering.
A bayesian approach to tackling hard computational problems. InUAI ’01, pages 235–
244, 2001.

[5] E. A. Hansen and S. Zilberstein. Monitoring and control of anytime algorithms: A
dynamic programming approach.Artificial Intelligence, 126(1–2):139–157, 2001.

[6] G. R. Harick and F. G. Lobo. A parameter-less genetic algorithm. In W. Banzhaf et al.,
editor,GECCO, volume 2, 1999.

[7] M. G. Lagoudakis and M. L. Littman. Algorithm selection using reinforcement learn-
ing. In Proc. 17th ICML, pages 511–518, 2000.

[8] M. Petrik. Statistically optimal combination of algorithms. SOFSEM 2005.


