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Abstract

We reformulate algorithm selection astiene allocationproblem: all

candidate algorithms are run in parallel, and their reafiviorities are
continually updated based on its current time to solutictijreated ac-
cording to a parametric model that is trainaald used while solving a
sequence of problems.

1 Motivation

Meta-Learning techniques typically require a long trainphase, during which a large
number of problems is repeatedly solved with each of thdatai algorithms, in order to
learn a mapping fromptoblemalgorithm) pairs to expected performance, to be used for
algorithm selection. This approach poses a humber of pmublelt presumes that such
a mapping can be learned at all, i.e. that the actual perfocenaf an algorithm on a
given problem will be predictable with enough precisiondvefeven starting it. It also
assumes problem instances met during the training phase dtabstically representative
of successive ones. For these reasons, there usually isyntowlatect a relevant discrep-
ancy between expected and actual performance of the chiggmittam. It also neglects
computational complexity issues: ranking between alporit is often based solely on the
expectedyuality of the performance, and the time spent during the trainiresehs not
even considered. Thalgorithm Portfolio paradigm [1] consists in selectingsabsetof
the available algorithms, to be run in parallel, with the sagpriority, until the fastest one
solves the problem. This simple scheme is more robust,sle#s likely that performance
estimates will be wrong for all selected algorithms, bu¢duires the same expensive train-
ing procedure, and also involves an additional overhead tduhe “brute force” parallel
execution of all candidate solvers.

In our view, a crucial weakness of these approaches is thgtdbn't exploit any feedback
from the actual execution of the algorithms. We try to movéep & this direction, intro-
ducingDynamic Algorithm Portfoliosinstead ofirst choosing a portfolidghenrunning it,
we iterativelyallocatea time slice, sharing it among all the available algoritharsjup-
date the relative prioritie®f the algorithms, based on their current state, in ordeavorf
the most promising ones. Instead of basing the prioritylaition on performance quality,
we fix a target performance, and try to minimize the time telhaa To this aim, we search
for a mapping from groblemalgorithmcurrent algorithm statgtriples toexpected time
to reach the desired performance quality. To further redoceputational complexity, we
focus onlifelong-learningtechniques that drop the artificial boundary between tngiaind



usage, exploiting the mapping during training, and inalgdiaining time in performance
evaluation. In [2, 3] we termed this approagtiaptive Online Time AllocatiofAOTA).

2 Previous work

A number of interesting “dynamic” exceptions to the othemvstatic algorithm selection
paradigm can be met in literature (see the techrep versid@]dbr a more exhaustive
bibliography). In [4], algorithm recommendation is basedtiee performance of the can-
didate algorithms during a predefined amount of time, calfebbservational horizon
In anytime algorithm monitoringp], the dynamic performance profilef a planning tech-
nigue is updated according to its performance, in orderdp #ie planning phase when
further improvements in the actions planned are not worghtitme spent in evaluating
them. The “Parameterless GA’ [6] is a fixed heuristic timeedition technique for Genetic
Algorithms. In a Reinforcement Learning setting, algariteelection can be formulated
as a Markov Decision Process: in [7], the algorithm set idekisequences of recursive
algorithms, formed dynamically at run-time solving a sedis decision problem, and a
variation of Q-learning is used to find an online algorithntestton policy; in [8], a set
of deterministic algorithms is considered, and, under slmitations, static and dynamic
algorithm selection techniques based on dynamic progragnarie presented.

3 AOTA framework

Consider aequence3 of m problem instancel, bs, . . ., b,,, roughly sorted in increasing
order of difficulty, and featuring precise stopping critefe.g. search problems in which
the solution is known to exist and can be recognized; optition problems in which a
reachable target value for performance is given); and 4 &t algorithmsa,, ao, . . . , a,,
that can be applied to the solution of the problem®Birpaused and resumed at any time,
and queried, at a negligible cost, for state informatiba R? related to their progress in
solving the current instance. We aim at minimizing the timesolve the whole problem
sequence3. To describe the state of a Dynamic Algorithm Portfolio (DARLt ¢; be the
time already spent on;, 7; the currentestimateof the time still needed by, to solve
the current problemx; a feature vector, possibly including information about therent
problem instance, the algorith itself (e.g. its kind, the values of its parameters), and its

current statel;; H; = {(xg’”), tff)), r=20,...,h;} asetof collected samples of these pairs,
f- amodel that maps historid$; to estimated;. If the modelf, was precise enough, we
would not need to run more than one algorithm, éh¢hat is mapped to a lower before

its start ¢; = 0): it is instead more realistic to assume that the modelisneges are rough,
but can be improved by collecting more datafn, i.e. by getting more run-time feedback
on the actual performance af on current problem instance. We then introduce a set of
nonnegative scalarBs = {p1,..,pn},pi > 0,> ., p; = 1, that represent the current
biasof the portfolio, slice machine time with a small intervat, and iteratively share each
time slice between the algorithms proportionally to therent bias; before each iteration,
the bias is updated according to a functifn of {;}, that obviously gives more time to
expected fastet; (i.e. the ones with a low,); after a share; At has expiredr; is updated
based on current?; (Fig. 3). Inintra-problemAQOTA, the predictive modef, is fixed; in
inter-problemAQOTA, f, itself is adaptive, and gets updated after each problensisno.

For fp, one reasonable heuristic, that gave good results, censisissigningl /2 of the
current time slice to the expected fastest algorithm (itee dne with lowest;), 1/4 to
the second fastest, and so on. This heuristic cannot betlglisgplied to inter-problem
AQOTA, though, as the model would obviously be unreliableimythe first problems of
the sequence. In this case it is better to start the problepmesee with a “brute forcefp
(p; = 1/n), and vary it gradually towards the above described “ragikify.



Figure 1: A pseudocode for inter-problem AOTA

For each problem b
initialize {r}
Wil e (br not sol ved)
update Pa= fp({n:})
For each al gorithm q;
run a; for pAt
update H; = H; U (x;,t;)
update 7, = f-(H;)
End
End
update f, based on {H;}
End

4 Example AOTAs and experiments

In [2] we presented a fixed heuristf¢. We considered algorithms with a scalar statthat
had to reach a target valué; in this case is a simplearning curve Through a shifting
window linear regression, we extrapolated for eathe timet; 5, at which the current
learning curveH; would reach the target value, in order to estimate the timsototion

Ti = ti sol — t;- Even though the estimates were obviously optimistic, thheye updated
so often that the overall performance of the intra-proble®TA was remarkably good,;
its obvious limitations were that it required some prior Wedge about the algorithms,
and a simple relationship between the learning curve antirtteeto solution. What if we
instead want tdearn a potentially complex mapping, from scratch? For a successful
algorithma; that solved the problem at tim;h"’), we cana posteriorievaluate the correct
7" = ") _ (") for each painx\"”),+") in H;. In a first tentative experiment, that led
to poor results, these values were used as targets to leagression from pairx, ¢) to
residual time values. The main problem with this approach is whictvalues to choose
as targets for thansuccessfulgorithms. The alternative we presented in [3] is inspbed
censored samplinfpr lifetime distribution estimation, and consists in leiaig a parametric
modelg(7|x; w) of the conditional probability density function (pdf) ofethiesidual time
7. One advantage of this approach is that it fully exploits $tete history information
gathered, as it allows to learn from the unsuccessful alyos as well. The model was
obtained by training a neural network to mapalues to the two parameters of an Extreme
Value distribution of the time to solution, on data colletighile solving a sequencB

of 21 deceptive problems, with a sét of 76 different Genetic Algorithms. In Fig. 2 we
compare the NN model (NN-AOTA) from [3] with a simpler one,@aglratic expansions of
x of the formwg + Y~ wiz; + Zm w; jxix; (L2-AOTA). The average ratio between the
time spent by the whole portfolio and the (usually differaheach run and on each task)
best element in the set was abautfor the fixedf and8 for the adaptivef. AOTA. This
latter would be e.g. the performance ofaready trained'static” Algorithm Portfolio that
picked, for each probleng of the 76 algorithms, always including the fastest: to fairly
compare with such a technique, though, we should also cenggl additional training
time.

We advocate the use of Dynamic Algorithm Portfolios wittssgftcomputationally expen-
sive algorithms. For faster ones, a more refined approaaldhtso take into account the
cost of updating the model. The modglwas trained on all historic data gathered so far,
in a “batch learning” approach: for longer problem sequenea online method would
obviously be preferable, in order to obtain a scaldifdelong meta learning technique. In
future work we plan to address these and other limitationgpong experiments focus on
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Figure 2: The cumulative time spent on the sequence of tasks by the adgptiveethod, with a
neural network (NN-AOTA) and a quadratic model (L2-AOTA), caamgd with the fixed’- from [2]
this time with rankingfr (AOTA,,). Also shown are the the performances of the (usually different
at each run and on each task) fastest solver of the set, (BEST), wbigk be the performance of
an ideal algorithm selection with “foresight” of the corregtvalues att; = 0; and the estimated
performance of a brute force approach (BRUTE), i.e. running alblorithms in parallel until one
solves the problem, which leaves the figure and completes the task seqi¢ime3.3 x 10”. Time
is measured in fitness function evaluations, values shown are gpffeconfidence limits calculated
on20 runs.

alternative parametric models, and different algorithtfpseblem sequence combinations.
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