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Abstract

This paper reviews several recent multi-task learning algorithms in a gen-
eral framework. Interestingly, the framework establishes a connection to
recent collaborative filtering algorithms using low-rank matrix approxi-
mation. This connection suggests to build a more general nonparametric
approach to collaborative preference learning that additionally explores
the content features of items.

1 Introduction

Learning from multiple related tasks has been known as “multi-task learning” or “learning
to learn”[3]. It explores the dependency between learning tasks at hand, and aims (1) to
achieve a better performance than the result of learning single tasks independently, and
(2) to further generalize previously learned knowledge for benefiting new learning tasks.
In this paper we focus on a specific family of multi-task problems where each task is to
learn a predictive function and all of them share the same input space and output space.

We first review single-task learning. Given a hypothesis space H endowed with ΩH :
H → R+ measuring the complexity of hypotheses, a single-task learner learns a predictive
function f ∈ H by generalizing measured responses y = {yi} of f acting on inputs X =
{xi}. Let `(yi, f(xi)) be the empirical loss, the learning problem amounts to

min
f

∑
i

` (yi, f(xi)) + λΩH(f) (1)

In contrast, multi-task learning considers m scenarios, where each scenario j has an em-
pirical data set Dj = (Xj ,yj). Intuitively, we may be able to find an optimal hypothesis
space that is suitable for all the scenarios. Therefore, let us consider a space of hypothesis
spaces S, where Hθ ∈ S is a hypothesis space, with θ being the index or parameters of
hypothesis spaces. If we can find a L(Dj ,H) to measure the cost incurred by applying H
to model the data of scenario j, then a general multi-task learning can be formulated as

min
θ

∑
j

L(Dj , θ) + γCS(θ) (2)



where CS(θ) measures the complexity of Hθ ∈ S, playing a role similar to ΩH in the single-
task setting. Then given the optimum H∗, each predictive function fj can be estimated
via a usual single-task learning.

Optimizing the hypothesis space H amounts to capture the common structure shared over
multiple predictive tasks. This common structure describes the dependency between them.
If comparing the formalisms of signal-task learning (1) and multi-task learning (2), we can
find that they appear to be very similar, both end up with minimizing an empirical loss and
a complexity penalty. In contrast to generalizing empirical examples to new data in the
single-task setting, multi-task learning aims to generalize learned knowledge to new tasks.
Within the described framework, now we are able to review several recently proposed
multi-task learning methods

Parametric Bayesian Multi-task Learning: The method in [2] considers linear func-
tions fj(x) = w>

j x where x has finite dimensionality and can be results of an explicit (non-
linear) mapping from original features. Following a hierarchical Bayesian model, each wj is
sampled from a common prior Gaussian distribution N (wj |m,Σ). Then the learning is to
maximize the marginalized log-likelihood of Dj with respect to the parameters θ = (m,Σ).
This is equivalent to define the loss L(Dj , θ) = − log

∫
p(yj |Xj ,wj)p(wj |m,Σ)dwj and

then solve

min
θ

∑
j

L(Dj , θ) (3)

Compared to the formulation (2), this approach has no prior on θ and is thus not fully
Bayesian. Due to the lack of complexity control, the learned knowledge θ∗ from existing
tasks might not be generalizable to new tasks.

Regularized Multi-task Learning: Recently a multi-task learning algorithm based on
support vector machines was proposed [4]. It decomposes the linear function’s weights as
wj = vj + w0, where w0 is the same for all the tasks and vj are independent from each
other. Let θ = w0, then the problem can be formulated as (2) with

L(Dj , θ) = min
vj

∑
i

(y
(j)
i −w>

j xi)+ + λ‖vj‖2 (4)

CS(θ) = ‖w0‖2 (5)

where (·)+ is the hinge loss. From a Bayesian point of view, the model assumes wj following
N (w0, σI). As a consequence, it only estimates those functions’ mean f0(x) = w>

0 x while
ignoring their second-order dependencies, due to the fact that the covariance of wj is fixed,
not adapted to observed tasks.

Common Feature Mapping: A family of methods [8, 11, 1] learn to explicitly map
the inputs x into a latent space via t = φθ(x). Then in the new feature space each task
can be independently treated as a single-task learning problem fj(x) = w>

j φθ(x). Let wj

follow a Gaussian with zero mean and unitary covariance, one can easily write down the
marginalized likelihood of Dj given θ. If θ follows a prior distribution p(θ), the multi-task
learning can be formulated as (2) with

L(Dj , θ) = − log p(yj |Xj , θ) (6)

CS(θ) = − log p(θ) (7)

which gives the penalized maximum likelihood estimate θ∗. Very importantly p(θ) encodes
the prior knowledge about the hypothesis space. For example, in a very recent paper [11]
θ is enforced to produce latent variables that are maximally independent, and thus a
higher order dependency of functions is considered. Usually feature mapping methods
have to limit the dimensionality of latent space, and hence restrict the degrees of freedom
of predicting functions. Another approach [1] alleviates the problem by assuming fj(x) =
v>j ψ(x)+w>

j φθ(x). Since the first part v>j ψ(x) is independent over tasks and can possibly
work with infinite dimensional features, f has no direct restrictions. But the common
structure itself is still restricted by a parametric feature mapping φθ(x) with a predefined
dimensionality.



Nonparametric hierarchical Gaussian processes: The approach in [10] improves the
parametric Bayesian method [2] from two perspectives: (1) In order to prevent overfitting,
a conjugate normal-inverse-Wishart prior p(m,Σ) is used to control the complexity of
θ = (m,Σ); (2) The parametric functions are generalized to be infinite-dimensional and
nonparametric. Thus the common structure is directly defined on the function space,
characterized by a mean function f0 and kernel K. Interestingly, the prior p(m,Σ) in the
parametric case corresponds to another normal-inverse-Wishart distribution p(f0,K) in
the nonparametric case [6]. Then the multi-task learning is equivalent to kernel learning
by minf0,K

∑
j L(Dj , f0,K) + C(f0,K) with

L(Dj , f0,K) = − log

∫
p(yj |Xj , f)p(f |f0,K)df (8)

C(f0,K) = − log p(f0,K) (9)

An efficient EM algorithm has been developed. Compared to other multi-task learning
methods, hierarchical GP does not restrict the dimensionality of either predictive functions
or the shared common structure, and models both the first (i.e. common mean) and second
(i.e. kernel) order dependencies of tasks. Note that [9] also presented an EM algorithm for
kernel matrix completion, which is completely different in terms of purposes and underlying
principles.

2 Collaborative Filtering as Multi-task Learning

Collaborative filtering (CF) predicts a user’s preferences (i.e. ratings) on new products
(i.e. items) based on other users’ ratings, following the assumption that users sharing
same ratings on past items tend to agree on new items.

2.1 Collaborative Filtering via Low-Rank Matrix Approximation

Let Y ∈ Rn×m be the matrix representing m users’s ratings on n items. Since typically
each user has rated only a small number of items, the matrix Y’s most entries have missing
values. CF can be thought as a matrix completion problem. One way to do so is to perform
a low-rank approximation Y ≈ UV> [7, 5], where U ∈ Rn×k,V ∈ Rm×k. Given the
matrix approximation, user j’s ratings on item i can be predicted as arg miny `(y,UiV

>
j )

given a predefined loss `(·, ·). A maximum-margin factorization of the matrix Y with
missing values is formulated as

min
U,V

‖U‖2
F + ‖V‖2

F + β
∑

(i,j)∈S

`(Yi,j ,UiV
>
j ) (10)

where S is the index set for non-missing entries. The Frobenius norms of U and V serve
as regularization terms. When k goes infinity, [7] shows the problem can be solved as
semidefinite programming problem (SDP), which however scales to only hundreds of users
and items in their experiments. Very recently, [5] suggests an alternating optimization
that demonstrates a good scalability when k is finite, e.g. k = 100.

2.2 Collaborative Filtering via Multi-Task Learning

We first show an equivalence between maximum-margin matrix approximation based CF
and multi-task learning. The connection will derive a new nonparametric CF method
which works with an infinite dimensionality while still remains scalability on large data
sets.

Theorem 2.1 If K = UU> is full rank, then the problem (10) can be formulated as

min
K

∑
j

L(Yj ,K) + γC(K),



with

L(Yj ,K) = min
fj∈Rn

∑
i∈Sj

`(Yi,j , f j(i)) + f>j K−1f j , C(K) = trace(K)

where Yj are the ratings from user j and Sj the index set for items rated by user j

The proof is done by an application of the representor theorem and the identity ‖U‖2
F =

trace(UU>). Theorem 2.1 shows that low-rank matrix approximation based CF can be
formulated as a kernel learning problem similar to the hierarchical GP multi-task learning
[10]: each user j is modeled by a predictive function f j and the common structure is
modeled by a kernel matrix K. The new model avoids to directly specify the (possibly
infinite) dimensionality of U, but just bounds the trace of K.

Based on the connection we suggest to apply hierarchical GP to collaborative filtering
based on our previous work [6, 10]. The approach has certain advantages over the derived
learning problem in theorem 2.1: (1) The mean function f0 is now explicitly modeled,
which reflects people’s average ratings on all the items; (2) The empirical loss Dj(Yj ,K)
in theorem 2.1 is computed via the mode estimate of f j , while GP computes the loss in a
more robust way by the integral over the entire distribution p(f j |f0,K); (3) Each user j’s
ratings on item i is predicted by not only the mean but also the variance. An assessment
to the confidence of predictions is necessary in building recommender systems; (4) In
hierarchical GP the kernel matrix is computed from a basic kernel function κ(x, z), thus
the problem amounts to learn a kernel function based on the content features xi of items i,
which leads to a novel collaborative filtering algorithm that explores the content features
of items; (5) The penalty in hierarchical GP comes from a general prior on f0 and K.
Replacing trace(K) by a conjugate prior, namely a normal-inverse-Wishart distribution
p(f0,K), will leads to a tractable algorithm to estimate f0 and K. A simple EM algorithm
to estimate f0, K and f j , j = 1, . . . ,m is scalable to tens of thousands of users and
thousands of items, with the complexity O(ml3), where m is user size and l is average
number of ratings per user. Since typically a user rated a small set of items (e.g. l = 38 in
EachMovie), the algorithm has a linear scalability to the user size.

3 Preliminary Experiments

A preliminary experiment was run on EachMovie data set, with 10,000 users (having
more than 20 ratings), 1,648 movies. and 380,000 ratings taking values {1, . . . , 6}. 30%
ratings were hold out for evaluation. The algorithm took about 5 hours on a laptop with
a 1.4 GHz CPU. The normalized mean absolute error (NMAE) was 0.442, comparable
to the best results reported so far (see [5]). Very interestingly, GP model produced very
accurate estimates of prediction errors, computed as summation of predictive variance and
estimated noise variance. This feature will enable us to know how reliable an individual
recommendation is. Currently we are testing the algorithm on several data sets and
making comparisons with other algorithms. Besides NMAE, some ranking score will also
be evaluated.
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