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Abstract

We consider the idea of using learning curves to characterize learn-
ing tasks and ask the question of whether such a characterization
is useful for inductive transfer. We compute a database of learning
curves for 49 datasets and 9 learning algorithms and demonstrate
its utility in transferring information about expected performance.

1 Introduction

Popular in the early days of Machine Learning research, learning curves have mostly
been ignored in recent years. Single performance measures, such as n-fold cross-
validation accuracy and or area under the ROC curve, have become a kind of de
facto standard. Unlike these singular measures, learning curves depict the evolution
of some learning performance measure as a function of the size of the training set.

Recent results using learning curves highlight the fact that training set size must
be taken into account when comparing algorithms’ performance, as conclusions re-
garding relative predictive performance for small training set sizes may be reversed
as training set size increases [5]. Learning curves have also recently been used as
the basis for a method to predict the relative performance of a pair of learning algo-
rithms [4]. First, a library of learning curves is computed with progressive sampling
[3, 6]. New datasets are then matched against the database using information from
partially computed learning curves with the goal of predicting which of two algo-
rithms will produce the better accuracy on the dataset in question. We extend and
generalize this idea to demonstrate knowledge transfer about expected performance.

2 Experimental Method

Assuming that the metric of interest is accuracy, we define a learning curve Ca,d as
a function parameterized by the number of training instances, such that Ca,d : N →
(0, 1) and Ca,d(n) = p, where p is the percentage of n training instances from d that
a correctly classifies. We can estimate Ca,d by training a on a random sample of d
for various values of n, testing the resulting model on a holdout set to obtain a point
estimate and interpolating between our point estimates. The standard arguments
for curve estimation apply, of course.

Given a meta-database of datasets together with their associated learning curves



and the partial learning curve of a new query dataset, we want to know whether it
is possible to predict accurately:

• The best performance one might expect on the query dataset.
• How many examples would be needed to achieve a pre-defined level of

performance on the query dataset.

In other words, we wish to know whether our experience at learning tasks in the
past can be used to predict how well we might do at tasks in the future. Note that
predicting the above is somewhat akin to deciding the PAC-learnability of the query
dataset (in the sense of finding ε and N) [2, 7].

Part of the answer to the above questions hinges on whether or not datasets have
characteristic learning curves. Although one may argue that a learning curve is
likely to be affected by both the dataset and the learning algorithm, our hope is
that sufficient information may be gleaned from aggregate learning curves (over
datasets) to make prediction possible.

We report on a series of experiments using learning algorithms from the Weka
toolkit [8] and datasets from the UCI machine learning repository [1]. For all
experiments we use the algorithms’ default settings. The following describes the
experimental setup:

1. For each algorithm and each dataset, we compute a learning curve, yielding
a set of learning curves, {Ca,d}. To do this, we estimate the curves at points
defined as 5%, 10%, ..., 95% of the data available by making a random
draw from d, training a and computing an accuracy on the data not used
for training. At each point, we repeat the experiment 10 times and average
to avoid potential problems with sample selection and presentation order.

2. For each dataset d, we compute an aggregate learning curve, Cd, by aver-
aging d’s learning curves over all learning algorithms.

3. For each query dataset e,
(a) We compute Ce up to some pre-defined point (e.g., 20%) by averaging

the corresponding partial learning curves Ca,e

(b) We find the aggregate curve Cd closest to Ce using the R2 goodness of
fit measure

(c) We predict e’s performance from the latter part of Cd and compare it
with the actual performance by completing Ce.

3 Experimental Results

Our experiments are based on a total of 49 different data sets (Abalone, Adult-
all, Anneal, Audiology, Balance-scale, Breast cancer, Breast Wisconsin, Bupa, Car,
Cmc, Connect-4, Credit-australian, Credit-german, Dermatology, Diabetes, Ecoli,
Glass, Haberman, Heart-c, Heart-h, Heart-statlog, Hepatitis, Hypothyroid, Iono-
sphere, Iris, Isolet5, Kr-vs-kp, Labor, Letter, Lymph, Mushroom, Nursery, Page-
blocks, Post-operative, Primary-tumor, Segment, Sick, Sonar, Soybean, Spambase,
Tae, Tic-tac-toe, Vehicle, Vote, Vowel, Waveform, Wine, Yeast, Zoo) and 9 dif-
ferent algorithms (J48, Naive Bayes, Conjunctive Rules, NNge, HyperPipes, IB3,
Multi-layer Perceptron, an RBF network, and SMO).

Figure 1 shows, for each dataset e (leave-one-out procedure), how the root mean
squared (RMS) error between e and its closest match evolves as the length of the
partial learning curve for e increases.



Figure 1: Error vs Partial Learning Curve Length

The graph clearly shows that the error rapidly converges towards 0. In fact, for 45
datasets, considering five curve segments is sufficient to achieve very low error. To
gain further insight into the behavior of each dataset, Figure 2 provides a kind of
spectrum of homogeneity.

Figure 2: Error per Dataset vs Partial Learning Curve Length

Peaks in the spectrum correspond to datasets whose learning curves are significantly
different from the others. The three high peaks in Figure 2 correspond to the three
datasets with slow convergence in Figure 1.

Finally, Figure 3 shows how the number of datasets whose predictor is within ε (as
measured by RMS) evolves with the length of the partial learning curve. Note, for
example, that for 26 datasets, a partial learning curve a single segment in length
produces a RMS error prediction of less than 5%; also note that with partial curves
five segments long, 19 datasets have a RMS error prediction of less than 1%.



Figure 3: Transfer Utility as a Function of Partial Learning Curve Length

4 Conclusion

We have shown how learning curves may be used to effect a simple form of transfer.
Our preliminary results are encouraging and demonstrate that some information
about performance on new datasets may be inferred from information about per-
formance in the past.

There are a number of important issues that are the subject of ongoing research,
including the best way to sample when building the learning curves, whether learn-
ing curves should be normalized in some way, what impact the size of the feature
space may have, and whether some notion of curve variance might improve results.

References

[1] C.I. Blake and C.J. Merz. UCI repository of machine learning databases. Uni-
versity of California, Irvine, Department of Information and Computer Science,
1998.

[2] M.J. Kearns and U.V. Vazirani. An Introduction to Computational learning
Theory. The MIT Press, 1994.

[3] R. Leite and P. Brazdil. Improving progressive sampling via meta-learning on
learning curves. In Proceedings of the Fifteenth European Conference on Machine
Learning, pages 250–261, 2004.

[4] R. Leite and P. Brazdil. Predicting relative performance of classifiers from sam-
ples. In Proceedings of the Twenty-second International Conference on Machine
Learning, 2005.

[5] C. Perlich, F. Provost, and J.S. Simonoff. Tree induction vs. logistic regression:
A learning-curve analysis. Journal of Machine Learning Research, 4(2):211–255,
2003.

[6] F. Provost, D. Jensen, and T. Oates. Efficient progressive sampling. In Proceed-
ings of the Fifth International Conference on Knowledge Discovery and Data
Mining, pages 23–32, 1999.

[7] L.G. Valiant. A theory of the learnable. Communications of the ACM,
17(11):1134–1142, 1984.

[8] I.H. Witten and F. Eibe. Data Mining: Practical Machine Learning Tools with
Java Implementations. Morgan Kaufmann, San Francisco, CA, 2000.


