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Abstract

A significant advance in inductive modelling are systems that retain
learned knowledge and selectively transfer portions of that knowledge
as a source of inductive bias. We define such to be machine lifelong
learning (ML3) systems. This paper makes an initial effort at specifying
the scope of ML3 systems and their functional requirements.

1 Introduction

Over the last ten years progress has been made in machine learning and statistical mod-
elling that exhibit aspects of knowledge retention and inductive transfer. These represent
advances in inductive modelling that move beyondtabula rasalearning and toward ma-
chines capable of lifelong learning [15]. Henceforth, this article will refer to such as ma-
chine lifelong learning (ML3) systems. Despite the progress that has been made, there is
need for a clear definition of the knowledge retention and inductive transfer problem. To-
ward that end, this paper makes an initial effort at specifying the scope of ML3 systems
and their functional requirements.

2 Scope of ML3 Systems

In [12, 13] knowledge-based inductive learningis defined as an ML3 approach that uses
knowledge of the task domain as a source of inductive bias. As with a standard induc-
tive learner, training examples are used to develop a hypothesis of a classification task.
However, unlike a standard learning system, knowledge from each hypothesis is saved in a
long-term memory structure called domain knowledge. When learning a new task, aspects
of domain knowledge are selected to provide a positive inductive bias to the learning sys-
tem. The result is a more accurate hypothesis developed in a shorter period of time. The
method relies on the transfer of knowledge from one or more prior secondary tasks, stored
in domain knowledge, to the hypothesis for a new primary task. The problem of selecting
an appropriate bias becomes one of selecting the most related task knowledge for transfer.

An ML3 system is typically composed of short-term and long-term components and/or
exhibits short-term and long-term processes. Although two phases of learning may not be
necessary, it is frequently required so as to ensure that long-term domain knowledge is not
corrupted by inaccurate short-term learning. The following three sections outline general
requirements for ML3 systems and specific requirements for long-term retention of learned
knowledge and short-term learning with inductive transfer.
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3 General Requirements

3.1 Form of knowledge retention

Learned knowledge can be stored in functional or representational form within a ML3
[12]. The simplest method of retaining task knowledge in functional form is to save the
respective training examples. Other methods of retaining functional knowledge involve the
storage or modelling of search parameters such as the learning rate in neural networks.
An advantage of retaining functional knowledge, particularly the retention of the actual
training examples, is the accuracy and purity of the knowledge. Disadvantages of retaining
functional knowledge are the large amount of storage space that it requires and difficulties
in using such knowledge during future learning.

Alternatively, a description of an accurate hypothesis developed from the training examples
can be retrained. We define this to be a representational form of knowledge retention.
The description of a decision tree or a neural network are examples of representations.
The advantages of retaining representational knowledge is its compact size relative to the
space required for the original training examples and its ability to generalize beyond those
examples. The disadvantage of retaining representational knowledge is the potential loss
of accuracy from the original training examples.

3.2 Form of knowledge transfer

The form in which task knowledge is retained can be separated from the form in which it is
transferred. For example, the retained hypothesis representation for a learned task can be
used to generate functional knowledge in the form of training examples [8, 13].

Representational transfer involves the direct or indirect assignment of known task represen-
tation to the model of a new target (or primary) task [12]. In this way the learning system
is initialized in favour of a particular region of hypothesis space of the modeling system
[7, 9, 14]. Representational transfer often results in substantially reduced training time with
no loss in the generalization performance of the resulting hypotheses.

In contrast to representational transfer, functional transfer employs the use of implicit pres-
sures from training examples of related tasks [1], the parallel learning of related tasks con-
strained to use a common internal representation [2, 3], or the use of historical training
information from related tasks [15, 4]. These pressures reduce the effective hypothesis
space in which the learning system performs its search. This form of transfer has its great-
est value in terms of increased generalization performance from the resulting hypotheses.

3.3 Input and output type, complexity and cardinality

The output representation of a system capable of retaining and transferring knowledge
should not be constrained to a particular data type. A ML3 system should be capable of
predicting class categories and real-value outputs including scalar values as well as vectors.

An ML3 should be capable of dealing with its environment over a lifetime with a fixed
number of inputs and outputs for the task domain(s) under study. Certain inputs or outputs
might go unused for many tasks of a domain early in the learning system’s lifetime only to
be used quite frequently later in life. The rationale for this requirement is not to constrain
an ML3 system to a fixed amount of internal representation (this could change over time)
but to ensure a consistent interface with the environment and with other entities such as a
software agent, a application program or a human user.

3.4 Scalability

A ML3 system must be capable of scaling up to large numbers of inputs, outputs, training
examples and learning tasks. Preferably, both the space and time complexity of the learning



system grows polynomially in all three of these factors.

3.5 Accumulation of Practice

A ML3 system should facilitate the practice of a task. The system’s normal methods should
retain and transfer knowledge from one learning episode of a task to another such that
the generalization accuracy of the long-term hypothesis for the task increases. But, how
can a ML3 system determine from the training examples that it is practicing a task it has
previously learned versus learning a new but closely related task [5, 10]. We have come
to the conclusion that a ML3 system should not have to be explicit in this determination.
Rather, the similarity, or relatedness, of a set of training examples to that of prior domain
knowledge should be implicit; each training example should be able to draw upon those
aspects of domain knowledge that are most related. This suggests that domain knowledge
should be seen as continuum as apposed to a set of disjoint tasks.

4 Requirements for Long-term Retention of Learned Knowledge

4.1 Effective retention

A ML3 system should resist the introduction and accumulation of domain knowledge error.
Only hypotheses with an acceptable level of generalization accuracy should be retained
else, once saved in long-term memory, the error from a hypothesis may be transferred
to future hypotheses. A ML3 system must be concerned with this systemic growth in
error over its lifetime. Similarly, The process of retaining a new hypothesis should not
reduced its accuracy or that of prior hypotheses existing in long-term memory. In fact, the
integration or consolidation of new task knowledge should increase the accuracy of related
prior knowledge.

4.2 Efficient retention

A ML3 system should be efficient in its use of long-term memory (efficient in space). In
particular, the system should make use of memory resources such that the duplication of
information is minimized. A representational form of task knowledge will be more space
efficient than a functional form because of the reasons cited in Section 3.1. A ML3 system
should also be computationally efficient (efficient in time) when storing learned knowledge
in long-term memory. Ideally, retention should occur during short-term learning, however,
in order to ensure effective retention (reduction of error) this is rarely possible.

4.3 Effective indexing

A ML3 must be capable of selecting the appropriate prior knowledge for inductive transfer
during short-term learning. This requires that a ML3 be capable of indexing into long-term
memory for task knowledge that is most related to the primary task. Typically, primary
task knowledge will arrive in the form of training examples (functional knowledge) and no
representational knowledge will be provided. This requires design choices in the construc-
tion of the ML3 system. The system must either use functional examples to select related
domain knowledge or generate a hypothesis representation for the primary task to estimate
its similarity to existing domain knowledge representation.

4.4 Efficient indexing

A ML3 system must make the selection of related knowledge as rapid as possible. Prefer-
ably, the computational time for indexing into domain knowledge should be no worse than
polynomial in the number of tasks having been stored. Experimentation has shown that a
representational form of retained knowledge (e.g.weights of a neural network) can be more
efficiently indexed than a functional form (e.g.examples used to train the network) [6].



4.5 Meta-knowledge of the task domain

In most cases, it will be necessary for a ML3 system to determine and retain meta-
knowledge of the task domain. For example, it may be necessary to estimate the probability
distribution over the input space so as to manufacture appropriate functional examples from
retained task representation [13]. Alternatively, it may be necessary to retain characteristics
of the learning process (learning curve, error rate) for each task.

5 Requirements for Short-term Learning with Inductive Transfer

5.1 Effective learning

The inductive transfer (bias) from long-term memory should never decrease the general-
ization performance of a hypothesis developed by a ML3 system. A ML3 system should
produce a hypothesis for the primary task that meets or exceeds the generalization perfor-
mance of that developed strictly from the training examples. There is evidence that the
functional form of knowledge transfer somewhat surpasses that of representation transfer
in its ability to produce more accurate hypotheses [3, 11]. Starting from a prior represen-
tation can limit the development of novel representation required by the hypothesis for the
primary task. In terms of neural networks this representational barrier manifests itself in
terms of local minimum.

5.2 Efficient learning

Inductive transfer from long-term memory should not increase the computational time for
developing a hypothesis for the primary task as compared to using only the training exam-
ples. In fact, inductive transfer should reduce training time. In practice this reduction is
rarely observed because of the computation required to index into prior domain knowledge.
In terms of memory (space), there will typically be an increase in complexity as prior do-
main knowledge must be used during the learning of the new task. Our research has shown
that a representational form of knowledge transfer will be more efficient than a functional
form (supplemental training examples) [11].

Sections 4.3, 4.4, 5.1 and 5.2 indicate an interesting dichotomy between effective and ef-
ficient inductive transfer. Effective learning requires functional transfer whereas efficient
learning requires representation transfer.

5.3 Transfer versus training examples

A ML3 must take into consideration the estimated sample complexity and number of avail-
able examples for the primary task and the generalization accuracy and relatedness of re-
tained knowledge in long-term memory. During the process of inductive transfer a ML3
must weigh the relevance and accuracy of retained knowledge along side that of the infor-
mation resident in the training examples.

6 Conclusion

This paper has outlined the scope and functional requirements for a ML3 system. A ML3
system can retain and transfer knowledge in either representational or functional form. A
ML3 system should have no bounds on input and output variable type and complexity and it
should be scalable in terms of number of inputs, outputs, number of training examples and
learning tasks. A ML3 should facilitate the practice of a task and treat domain knowledge
as a continuum of tasks rather than a set of disjoint tasks.

Efficient long-term retention of learned knowledge should cause no loss of prior task
knowledge, no loss of new task knowledge, and an increase in the accuracy of old tasks



if the new task being retained is related. A ML3 must be capable of efficiently selecting
the most effective prior knowledge for inductive transfer during short-term learning.

Efficient short-term learning with inductive transfer should produce a hypothesis for a pri-
mary task that meets or exceeds the generalization performance of a hypothesis developed
from only the training examples. Experimental results indicate that effective learning excels
under functional transfer whereas efficient learning requires representation transfer. Lastly,
we point out that a ML3 must weigh the relevance and accuracy of retained knowledge
along side that of the available training examples for the primary task.
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