
Functional Similarity in Markov Environments

M. M. Hassan Mahmud and Sylvian R. Ray
Department of Computer Science

University of Illinois At Urbana Champaign
Urbana, IL 61801, USA

Abstract

In this paper we discuss the notion of functional similarity between dif-
ferent situations an artificial agent may encounter, and show how it may
be used to transfer information across tasks. We say two situations are
functionally similar (FS) if there exists an action that has a similar effect
in both the situations. So for instance, many situations containing a soc-
cer ball in an open space are FS with respect to the action ”kick ball”.
Thus, if we can determine that a novel situation is FS to some previously
observed situations with respect to an action, we can use the behavior of
the previous situations as an estimate of the behavior of the new situation
with respect to that action. In this paper we give a concrete definition of
functional similarity for Markov Environments and briefly show how this
may be used to construct and use a novel type of forward model, which
we call transition prediction model (TPM), for such domains. We also
mention some interesting theoretical properties of the TPM. Finally we
describe possible avenues of future research and related work.

1 Introduction

In this paper we briefly look at a mechanism that artificial agents may use to infer properties
of one part of an environment from another. This is particularly useful for agents, such as
robots, that operate in the domains where it is expensive to acquire examples required to
learn. The mechanism we look at exploits the notion offunctional similarity(the material
in this paper is described in more detail in[1]). For a qualitative example of this, consider a
human player first learning to play squash and then learning to play racquetball. The games
are not identical, but the courts, racquets and balls are similar. More importantly, the actions
of the player, such as forehands, backhands, running towards the ball etc. hassimilar effects
in both games. That is situations experienced by the player - various trajectory of the ball
and tactics used by the opponent - are functionally similar with respect to her actions.
Because of this similarity, the player is able to use knowledge acquired in one game in
another. Indeed, functional similarity can be identified between any two tasks that share
anything humans identify as objects (e.g. balls, racquets etc.)

2 Functional Similarity in Markov Environments

Markov Environments. We consider agents in finite Markov Environments, which are
defined by the pair(S, A). S is the set of states that the agent may be in andA is the set

of actions that the agent may apply at different states, and both sets are finite. Actions are
probabilistic, i.e. the next states′ observed on applying an actiona at states is given by
the conditional distributionP (s′|s, a). We also assume each state is described by a finite
length vector of features i.e.S = F1×F2×· · ·×Fn where each featureFi is finite valued.

Example 2.1To motivate the definition of functional similarity that follows, we consider
the following domain that we also use in our experiments below. The domain is a16× 16
celled gridworld domain called the Sticky Room domain (see figure 1(a)). Each state is
described by a vector of4 features, the first two gives thex, y coordinate of the cell, and
the second two constitutes a description of an adhesive chemical present in the cell. These
take values in the range0 − 100. So there are10, 000 possible adhesives. Each adhesive
belongs to one of5 possible groups. For each group there is a neutralizing chemical which,
when deployed by the agent, removes its adhesive properties until the agent leaves the
cell. The agent cannot leave a cell until the adhesive in the cell is neutralized. Adhesives
belonging to a particular type has a learnable description - for each type there are5 different
blocks of size20×20 spread around the100×100 feature space.0, 0 value of the adhesive
description features represents a neutralized chemical.

At each step the agent can try to deploy one of8 possible chemicals (5 of which are the
neutralizing ones) or move in one of the4 cardinal directions. Each action works with prob-
ability 0.8 and does something random with probability0.2. We call the states containing
the same type of adhesiveξ = 0 functionally similar, with respect to the Deploy-Chemical-
X whereX is the corresponding neutralizer. This is because theL1 norm between the
distribution over theeffectof the action Deploy-Chemical-X is 0 in all these states i.e.
with probability0.8 the adhesive is neutralized and with probability0.2 something random
happens. The same holds true for the Move-NORTH action (and for other motion actions)
for states that are at least one cell away from the boundary, and for the same reasons.

The central idea is this.Given the agent has observed sufficiently many states that areξ = 0
FS with respect to action Deploy-Chemical-X, it can learn the feature space description of
such states (which is learnable) and identify if a cell contains the same type of adhesive.
Now it can predict the effect of the action on the cell with error close to zero. This becomes
useful in planning since if we can predict the distribution over the effects of an action on a
novel state, we can also predict the resulting next state (consider using classical planning
like methods in domains with actions with unknown and probabilistic effects).2

(a) Each color is a different adhesive
type.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

654321

N
o.

 o
f s

te
ps

 u
nt

il
co

nv
er

ge
nc

e

Task No.

TPM+PS
PS

(b) Results for the Sticky Room domain

Figure 1: Sticky Room Domain. Figure 1(a) shows the domain. Figure 1(b) shows no. of
actions/steps required for the each agent to converge to the optimal cost policy to goal state.

Functional Similarity. Now letFk (’feature functions’) be the set of functions of the form
f : S → S, The setFk corresponds to the set of possible effects of actions. We assumeFk

is given as prior knowledge (seeTheoretical Properties of the TPM). The feature function
in the above example are vector functions which apply one of the following operations to
each feature :x → x + 1, x → x− 1 andx → 0 wherex is a feature value.

We further assume that iffi, fj ∈ Fk with i 6= j, thenfi(x) 6= fj(x). This constraint
implies that for each distribution over next statesP (s′|s, a), there is a unique distribution
overf ∈ Fk given byP (s′ = f(s)|s, a) = P (f |s, a). This distribution is unique because
for eachs′ there is at most onef ∈ Fk with s′ = f(s). Now, following the example above,
we define two statess, s′ to beξ functionally similar with respect to an actiona if the L1
norm between the distributionsP (f |s, a), P (f |s′, a) is less thanξ , that is

L1[P (f |s, a), P (f |s′a)] =
∑

f∈Fk

|p(f |s, a)− p(f |s′, a)| < ξ (2.1)

Transition Prediction Model. Now as mentioned above, for eachP (s′|s, a) there is a
uniqueP (f |si, a) with P (s′|s, a) = P (f |s, a). So L1[P (f |si, a), P (f |sj , a)] < ξ ⇔
L1[P (s′|si, a), P (s′|sj , a)] < ξ. Following the example above, the idea here is to use
this fact to construct aTransition Prediction Modelto predict for some novel statesnov

the distributionP (f |snov, a) over the effects, and hence the distributionP (s′|snov, a) over
next states, with error< ξ for some suitable value ofξ. A TPM is defined by the set of
pairs{(Sa, Ca) : a ∈ A}. EachSa = {Sai : 1 ≤ i ≤ ni} is a set of disjoint sets
of states, with eachSai corresponding to a group ofξSai

(see below) similar states. The
classifierCa (SVM, Neural Nets etc.) is trained with eachSai as a target concept. Given
a novel statesnov, theCa is used to determine whichSai the state belongs to. Then the
distribution P (f |s, a) for somes ∈ Sai is used as a prediction forP (f |snov, a). We
assume the estimate ofP (f |snov, a) given by the TPM is used to compute some function
v, and the value ofξSai

for eachSai is set such that the error in estimatingv is acceptable.
The value function in 3.1 is such av function and the TPM may be used to estimate it.

Theoretical Properties of the TPM.Our results for the TPM show that under reasonable
conditions (see below), states in eachSai, constructed by the TPM, contain similar ’ob-
jects’. Here, an object is any part of the environment that behaves similarly with respect
to different actions and has a learnable physical/feature space description. This property
is also what identifies real world objects, and so this an interesting result. The ’reasonable
conditions’ above roughly means that the elements ofFk, given as prior knowledge, have
the property that their domains are a union of learnable concepts (in the PAC sense). That
is Fk should contain elements that cover many transitions(s, s′) we are likely to observe
and also has a compact algorithmic description. We contend that providing aFk with this
property is not an onerous requirement since the experimenter decides what the features are
and therefore she should be in a position to determine which feature functions are likely to
be observed.

3 Using the TPM

We empirically demonstrated the efficacy of TPM by using it to learn tasks in certain types
of goal directed MDPs (see[2]). The type of goal directed MDPs we consider have constant
cost for each state action pair(s, a). Formally, the MDPs we consider are defined by the
tuple (S, A, I, G, d) whereS andA are as defined above,I is a set of start states,G is a
set of goal states andd is the constant cost per action. The task of the agent is to go to any
sG ∈ G starting from anysI ∈ I by selecting actionamin at each step:

amin = arg min
a∈A

Q′
a(s, sg) = arg min

a∈A

(
d +

∑
s′∈S

p(s′|s, a)γ min
a′∈A

Q′
a(s′, sg)

)
(3.1)

We compared the performance of Prioritized Sweeping (PS)[3] and PS augmented by
a classical planner style mechanism that uses the predictions made by TPM to predict a
path from the current state to any goal state when PS has not converged. We used the
Sticky Room domain described above for this comparison. A particular task of the agent
in this domain consists of the agent going from some given start state to some given goal
state. Each agent solved6 different tasks in sequence, with each task differing in the goal
state, start state, and configuration of the chemicals and the chemicals that are present. We
expected the PS+TPM agent to do better by transferring information across tasks and states
because, as described in the example 2.1, states in different tasks are functionally similar
with respect to all the actions. The results, which agree with expectations, are shown in
figure 1(b).

4 Discussion

At this point we are actively engaged in extending our system in continuous valued MEs
and are working towards implementing it in a mobile robot to transfer information across
tasks involving pushing around different kinds of objects. We are also working towards
extending our method to work on goal directed MDPs with non-constant costs and regular
MDPs. We are also constructing theories to determine where FS fits in as a knowledge
transfer mechanism for rational agents in general. It will also be interesting to extend our
work to apply functional similarity at multiple levels of abstraction within the same task.

Now let us look at some relevant previous work. The difference between previous forward
models (FMs) such as,[4] and, [5] (Belief net based) is that these learn to approximate
the feature functions directly while we use the prior knowledge about the feature func-
tions (which we claim is available for many domains of interest). Hence we only need to
solve a classification task (theCas) instead of the much more difficult regression task being
computed by the FMs, and so can learn to predict with much fewer examples and greater
accuracy. Also, our theoretical results suggest principled ways to learn the feature func-
tions which bears further investigation. Our method is also closely related to state space
aggregation methods such as[5]. The difference between these methods and ours is that
the aim of aggregation is to reduce computation time rather than improving prediction. It
should be interesting to explore applying FS ideas to aggregated state spaces. The gen-
eral research area that our method is most closely related to is probably, Lifelong Learning
([6]). In these methods, the aim is to have an agent that lives for a long time and gradually
accumulates knowledge. It then uses this knowledge to make itself better. The difference
between these methods and ours is the use of FS to acquire knowledge.

AcknowledgementWe would like to thank Samarth Swarup and Kiran Lakkaraju for their comments.

References

[1] M. M. Hassan Mahmud. Exploiting functional similarity for information transfer (unpublished).
https://netfiles.uiuc.edu/mahmud/shared/FS.pdf, 2005.

[2] A.G. Barto, S.J. Bradtke, and S. P. Singh. Learning to act using real-time dynamic programming.
Artificial Intelligence, 72(1):81–138, 1995.

[3] R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

[4] A. Karniel. Three creatures named ’forward model’.Neural Network, 15:305–307, 2002.

[5] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming with factored
representations.Artificial Intelligence, 121:41–107, 2000.

[6] S. Thrun and L. Y. Pratt, editors.Learning To Learn. Kluwer Academic Publishers, Boston, MA,
1998.

