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Abstract 

KBCC is an extension of the cascade-correlation algorithm that 
treats functions encapsulating prior knowledge as black-boxes 
which, like simple sigmoidal neurons, can be recruited in the 
network topology. KBCC has been studied on artificial and real 
tasks and it has successfully reused various kinds of knowledge. 
This paper surveys the work on KBCC, from old published data to 
the latest new results. It also describes KBCC’s position in the 
transfer of knowledge. Likely future research is forecast. 

1  Introduction 

In 2000, a new algorithm for transfer of knowledge was presented at IJCNN [1] and 
ICML [2] called knowledge-based cascade-correlation (KBCC). This algorithm is an 
extension of the cascade-correlation algorithm and can insert prior knowledge 
directly into its topology as needed. Here, we review KBCC, its various 
applications, and its position as a transfer-of-knowledge algorithm. 

2  The KBCC Algorithm 

KBCC is a natural generalization of cascade-correlation (CC) [3]. CC is a neural 
network learning algorithm similar to backpropagation (BP), but instead of starting 
with a complete network topology, it begins with only input to output weights and 
adds hidden nodes during training as needed. Whereas CC is only able to recruit 
sigmoidal hidden units, KBCC is able to recruit whole trained networks into its 
architecture. Figure 1 shows an example of a KBCC network. Like CC, a hidden 
node can be installed beyond previous nodes, thus being fed by those older nodes. 
Any differentiable multivariate vector-valued function can be recruited. Throughout 
this paper, we call the network to train the target network and prior knowledge 
source networks. 

*Correspondence should be send to Thomas Shultz thomas.shultz@mcgill.ca. 



 

 

 
Figure 1: A KBCC network with four hidden units: a source classifier X, a source 

approximator Y, and two single sigmoid units. (Modified from [a]) 

Initially, a KBCC network has only input and output nodes fully connected using 
small random weights. Like CC, it alternates between output and input phases. In 
output phases, only the weights connecting to the output units are trained to 
minimize the sum squared error (equation 1). In input phase, weights feeding the 
pool of candidates are randomly initialized and trained to maximize the candidate’s 
correlation with target-network output error (equation 2). Optimization is typically 
done using QuickProp. When the optimization process stagnates, or after a fixed 
number of epochs, training shifts from one phase to the other until final criterion is 
reached. 
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where Vo,p is the network output value for output o of pattern p and To,p is the target 
(or desired) value for output o of pattern p. 

 ( )( )
E

TVVCov
G

F
c

c

−
=

,  (2) 

where || ||F is the Frobenius norm of the covariance matrix between the candidate 
output patterns Vc of candidate c and the error patterns V-T of the target network and 
where E is as in equation 1. 

A detailed description of the algorithm with all the default parameters values can be 
found in [4][5]. Candidates can also be allowed to compete to be either on the latest 
top-most layer or on a new one using the sibling-descendant method [6]. Pruning 
methods can also be used on KBCC networks [7]. 

3  Survey of  Experiment and Results  

Research has focused on whether or not KBCC is able to use prior knowledge in 
learning, whether such knowledge can accelerate learning, and whether knowledge 
could compensate for lack of data or noisy data.  

3 .1  Using  Pr ior  Knowledge  o f  Var ious  Types  

Almost every KBCC network we studied did recruit source networks if they were 
available. Our most systematic studies of KBCC [4] ([1][2][8]) used dichotomous 
classifications of patterns in a bounded bi-dimensional input space. Points inside a 
region of the space of a particular shape are true, while the others are false. KBCC 



 

recruited sources having a true cluster at a different location in the input space 
(translation), of a different size (scaling), or having a different orientation (rotation). 
It can combine simple sources to learn a more complex shape and reversely, can 
extract knowledge from complex sources to learn a simpler shape. 

Combining simple sources into a complex solution is called compositionality. 
KBCC was able to learn a higher parity problem and a more differentiated 
chessboard problem, knowing simpler version of them [9]. KBCC was also able to 
learn how to test for prime numbers using knowledge of factors [in progress] and 
learn CAR-CDR compositions in Lisp [unpublished]. 

Sources can also be recurrent networks (in CAR-CDR). KBANN  has also been used 
to convert symbolic rules into a differentiable network form recruitable by KBCC 
[7]. A main advantage over simply retraining the resulting KBANN network is that 
KBCC can select only the most useful rules for the given task [10][7]. KBCC has 
also been demonstrated successful in real world problems such as vowel recognition 
[5] and DNA splice-junction determination [10][7]. 

3 .2  Acce lerat ing  Learning  and Compensa t ing  for  Lack  o f  Data  

KBCC was shown to accelerate learning of the foregoing tasks (see Figure 2). 
Compensation for lack of data is currently under study for the dichotomous cluster 
task. Figure 3 shows preliminary results for exact knowledge, irrelevant knowledge 
and absence of knowledge on a rectangular cluster as the training set size is reduced. 
One can see that as the amount of data decreases, there is better learning when very 
relevant knowledge is used as opposed to irrelevant or no knowledge. 
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Figure 2: Knowledge speed-up. 
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Figure 3: Knowledge-biased learning 

accuracy. 

4  KBCC Posit ion in  the Knowledge Transfer Arena 

Previous reviews of transfer of knowledge have focused on categorizing the type of 
transfer (representational or functional, direct or indirect, etc) [11]. In such a 
scheme, KBCC should be considered a direct literal representational transfer 
algorithm, because the original representation is copied unchanged into the new 
network topology. KBCC is less constrained than other representational transfer 
algorithms because only the derivative of the source knowledge is needed in KBCC. 
Even this constraint could be relaxed if the optimization method was not gradient 
based. 

Unlike many knowledge-transfer algorithms, KBCC is not constrained to require the 
same input and output representations or the same internal topology across source 
and target networks. KBCC may be the only neural algorithm able to create 
cascaded compositions of multiple source networks.  



 

Knowledge-transfer algorithms must select a relevant source, build and evaluate a 
map between source and target and update the knowledge pool to include the 
resulting new knowledge [12]. So far, the KBCC pool of source candidates contains 
knowledge the experimenter places there. Then KBCC by itself finds maps, 
evaluates and selects sources, and uses the best mapped sources to learn the target 
task. Perhaps KBCC could update the source pool by automatically storing the 
target network. At this point, selection is not fully automatic, because KBCC is 
unlikely to scale well under a large number of sources.  

5  Conclusion and Future works 

In short, KBCC was shown to be able to select and map a variety of prior 
knowledge in new learning. KBCC makes complex combinations of prior 
knowledge, and uses knowledge to accelerate learning and improve accuracy in 
cases of impoverished training data. KBCC was also shown to work on real world 
problems. Although some of these abilities still require deeper evaluation, an 
important next step is to look at life-long learning, or how to deal with a continually 
increasing bank of knowledge. 
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