
Cross-Domain Knowledge Transfer Using
Structured Representations

Samarth Swarup
Department of Computer Science
University of Illinois at Urbana

Urbana, IL 61801
swarup@uiuc.edu

Sylvian R. Ray
Department of Computer Science
University of Illinois at Urbana

Urbana, IL 61801
ray@cs.uiuc.edu

Abstract

Previous work in knowledge transfer in machine learning has been re-
stricted to tasks in a single domain. However, evidence from psychol-
ogy and neuroscience suggests that humans are capable of transferring
knowledge across domains. We present here a novel learning method,
based on neuroevolution, for transferring knowledge across domains. We
use many-layered, sparsely-connected neural networks in order to learn
a structural representation of tasks. Then we mine frequent sub-graphs in
order to discover sub-networks that are useful for multiple tasks. These
sub-networks are then used as primitives for speeding up the learning of
subsequent related tasks, which may be in different domains.

1 Introduction

We are interested in the design of agents that work for an extended period of time [7].
During this “lifetime”, an agent may encounter several, possibly related, learning tasks. It
is desirable that the agent should be able to improve its learning performance with each new
task encountered, i.e., it should gain some experience about “how to learn” each time it has
to learn a new task. Techniques for accomplishing this are called, variously, cumulative
learning, lifelong learning, meta-learning, learning to learn etc. [11, 12, 9].

Most methods for knowledge transfer in machine learning assume that all tasks come from
the same domain. A domain is an input-output space. There are several reasons for this.
Inputs can be thought of as coming from sensors, e.g. in robots, which then have to learn
several tasks in a given domain. Thus the input space is fixed, and knowledge transfer is
done by, e.g, learning with a neural network in which the first layer is shared by several
tasks [1]. However, for more higher-level, “cognitive” tasks, it is unreasonable to try to
learn directly from sensory inputs. Instead learning can be thought to occur in some state
space, or feature space, that is extracted from the sensory inputs. It would still be very
useful to be able to transfer knowledge across tasks. However, we may now have to deal
with input-output spaces of different dimensions. It is relatively difficult, though, to imag-
ine how to transfer information between two neural networks of different input and hidden
dimensions.

Evidence from psychology, however, suggests that humans can, and often do, transfer in-



formation across domains. For example, Dunbar and Blanchette studied analogies used
in political speeches, and analogies used by scientists in labs [3]. In a study conducted
by videotaping and audiotaping molecular biologists and immunologists over the course
of several lab meetings, they found both within-domain and cross-domain analogies being
made. While the majority of analogies (75%) were within-domain and involved similarity
of superficial features, cross-domain analogies dominated when the scientists were trying
to formulate new hypotheses. 80% of the analogies used in this case were cross-domain
and used structural features (i.e. relationships). In an analysis of analogies used by politi-
cians and journalists during a referendum campaign in Quebec in 1995, they found that
only 24% were from politics, i.e. over 75% of the analogies were based on structural com-
parisons with other domains. In contrast, experiments on analogy making conducted in
laboratory settings often find that people mostly make analogies based on superficial fea-
tures. This is not surprising perhaps, because these experiments are generally timed, and
structure mapping is a more computationally intensive procedure. The point is that people
transfer knowledge across domains quite naturally. It has even been argued that analogies
form a central part of cognition [4].

Support for this idea also comes from the study of mirror neurons [6]. Mirror neurons are
neurons that are active both when an action is performed and when it is observed. They
have also been implicated in empathy, the evolution of language, and multi-modal learning.

These studies suggest that knowledge transfer in machine learning should be extended from
dealing with multiple tasks in a single domain to tasks in multiple domains. We present
here a learning method for achieving this goal. The key idea is to use a structured repre-
sentation, which allows extraction of domain-independent knowledge. The representation
and learning method are described in more detail in the next section.

The rest of this article is organized as follows. In the next section we describe the repre-
sentation and learning algorithm. This is followed by a set of preliminary experiments that
demonstrate the benefit of knowledge transfer across domains in a set of Boolean-function
learning tasks. Finally, we discuss some application areas and directions for future work.

2 Representation, Learning, and Knowledge Transfer

Representation: To capture the notion of the structure of a task, we use many-layered,
sparsely-connected neural networks [10]. These are constructed out of a set ofprimitives,
which are also networks. To begin with, the set of primitives is small and contains just
networks with a single node. In our implementation, each node of a network computes a
sigmoid function of the weighted sum of its inputs, but this does not have to be the only
case. A node (or a primitive) might compute any function of its inputs. A network is
a composition of primitives into a directed acyclic graph. There is no reason recurrent
connections should not be allowed, but they have been disallowed here for simplicity.

A network is also represented by agenome. A genome, unlike a network, is linear. Each
genein the genome is a structure that corresponds to a node in the network. It describes the
type of the node (i.e. the function it computes), the position of the node in the network, and
which nodes provide input to this node. Some nodes get external inputs; these are simply
denoted by a -1 for the input number in the corresponding gene. One node is designated as
the output node. Again, for simplicity, we are only considering tasks with a single output.

Learning and Knowledge Transfer: Learning is done by an evolutionary algorithm that
constructs a population of networks from the primitives. Each network in the population
is evaluated on the training set and assigned a fitness corresponding to its accuracy on the
training set. A subset of the population is chosen to create the next generation via mutation
and crossover. There can be three kinds of mutations:adding, deleting, and replacing



mutations. A deleting mutation simply removes a gene from the genome of a network. An
adding mutation adds aprimitive to the genome. Remember, a primitive can be an entire
network. Similarly, a replacing mutation replaces a gene with a primitive. A new network
is created from two parents of high fitness by a one-point crossover. This is followed by a
mutation with some small probability. Some of the high fitness networks are carried over
unchanged to the next generation, and the process is repeated until some accuracy or time
criterion is met.

The set of primitives is augmented by running a graph mining algorithm on the set of tasks
that have been solved, to discover frequent sub-networks. These represent partial solutions
and are common to several tasks. This allows transfer of knowledge across tasks in different
domains because these sub-networks are not bound to a particular input space.

3 Experiments

We did experiments with a set of Boolean functions where the output (0 or 1) depends on
just the absence or presence of a certain number ofadjacent1’s in the input. For example,
in one set of tasks, the output is 1 if there are 2 adjacent 1’s anywhere in the input vector.
The initial set of primitives were nodes that compute the AND, OR, and NOT functions, as
well as an “input” node that just copies its input unchanged to its output.

The tasks were defined over four domains, i.e. input spaces of four different dimensions
- 4, 8, 12, and 16 inputs. Ten tasks were learned over the four domains, differing in the
number of adjacent 1’s necessary for a 1 output. Figure 1 shows all the learning curves.
The 4-inputs, 2-adj-ones task was learned first, though the learning curve for that task is
not shown. The tasks were learned in left to right, top to bottom order (note that fig. 1 is
rotated, so the top of the figure is on the right of the page), and the CloseGraph graph mining
algorithm ([13]) was used to extract a set of common sub-networks from all the previous
networks after each new task network was learned. We see that learning with transfer
far outperforms learning without transfer in each case. We call this approachcumulative
learningbecause the set of sub-networks, which represents a store of abstract or common
knowledge, grows in a cumulative way over the course of learning (i.e. over an agent’s
lifetime).

Another major advantage of cumulative learning is that when we learn by transferring
knowledge from previous tasks, not only do we learn faster, we also discover solutions
that are similar to the ones we already know (for other tasks). There are generally several
ways of solving a particular task. The advantage of finding similar solutions is that we then
discover and reinforce1 the patterns that are useful for multiple tasks. This means that in the
future we will use these patterns more in solving related tasks, and thus discover solutions
that again reinforce these patterns. This is thecumulative advantage[2].

4 Future Work

The main direction for future work is to try this approach in a real-world situation. The idea
of primitives carries over easily to robotics and motion planning where the primitives are a
set of basic movements or abilities, and complex actions are carried out by composition of
primitives [5, 8]. Our cumulative learning approach could be used to coordinate multiple
limbs and learn complex actions quickly.

1The wordreinforceis not being used in a technical sense here.



Figure 1: Learning curves with and without transfer of information, for each task. Tasks
were learned in top to bottom, right to left order, i.e. 8-inputs-2-adj-ones, 8-inputs-3-adj-
ones, 12-inputs-2-adj-ones, etc.



References

[1] Rich Caruana. Multitask learning.Machine Learning, 28:41–75, 1997.

[2] Derek de Solla Price. A general theory of bibliometric and other cumulative advantage
processes.Journal of the American Society for Information Science, 27:292–306,
1976.

[3] Kevin Dunbar and Isabelle Blanchette. The inVivo/inVitro approach to cognition:
The case of analogy.Trends in Cognitive Sciences, 5:334–339, 2001.

[4] Douglas R. Hofstadter.The Analogical Mind: Perspectives from Cognitive Science,
chapter Analogy as the Core of Cognition, pages 499–538. The MIT Press, 2001.

[5] Marcelo Kallmann, Robert Bargmann, and Maja Matarić. Planning the sequencing
of motor primitives. InProceedings of the International Conference on Simulation of
Adaptive Behavior (SAB 2004), Los Angeles, CA, July 13-17 2004.

[6] G. Rizzolatti, L. Fadiga, M. Matelli, V. Bettinardi, E. Paulescu, D. Perani, and
G. Fazio. Localization of grasp representations in humans by positron emission to-
mography: Observation versus execution.Experimental Brain Research, 111:246–
252, 1996.

[7] Samarth Swarup, M. M. Hassan Mahmud, Kiran Lakkaraju, and Sylvian R. Ray. Cu-
mulative learning: Towards designing cognitive architectures for artificial agents that
have a lifetime. Technical Report UIUCDCS-R-2005-2514, University of Illinois at
Urbana-Champaign, Dept of Computer Science, 201 N. Goodwin Ave, Urbana, IL
61801, USA, 2005.

[8] Kurt A. Thoroughman and Reza Shadmehr. Learning of action through adaptive com-
bination of motor primitives.Nature, 407:742–747, October 2000.

[9] Sebastian Thrun and Lorien Pratt.Learning to Learn, chapter Learning to Learn:
Introduction and Overview. Kluwer Academic Publishers, 1998.

[10] Paul E. Utgoff and David J. Stracuzzi. Many-layered learning.Neural Computation,
14(10), Oct 2002.

[11] Ricardo Vilalta and Youssef Drissi. Research directions in meta-learning. In H. R.
Arabnia, editor,Proceedings of the International Conference on Artificial Intelli-
gence, Las Vegas, Nevada, USA, 2001.

[12] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning.
Artificial Intelligence Review, 18(2):77–95, October 2002.

[13] Xifeng Yan and Jiawei Han. CloseGraph: Mining closed frequent graph patterns. In
Proceedings of the 9th ACM SIGKDD conference on Knowledge-Discovery and Data
Mining (KDD 2003), 2003.


